%\104,6\ OSLO METROPOLITAN UNIVERSITY
o »
STORBYUNIVERSITETET

Project Phoenix

Bachelor Thesis 2020

Department of Computer Science

Earl John Torculas Laguardia
315611

Information technology

Tuan Minh Nguyen
5325862

Computer engineer

PROSJEKT NR.
2

o
NV
& %

Institutt for Informasjonsteknologi T”—GJENGEUGHET
Postadresse: Postboks 4 St. Olavs plass, 0130 Oslo Apen

Besgksadresse: Holbergs plass, Oslo
Telefon: 22 45 32 00

BACHELORPROSIJEKT

HOVEDPROSJEKTETS TITTEL DATO

Ambita — Project Phoenix 05/25/2020

ANTALL SIDER / BILAG

107
PROSJEKTDELTAKERE INTERN VEILEDER
Earl John Torculas Laguardia Sidney Pontes-Filho
Tuan Minh Nguyen
OPPDRAGSGIVER KONTAKTPERSON
Ambita AS Dennis Hernando Knudsen

SAMMENDRAG

Teknologi vokser raskt, og verktgy som brukes til programmering ma oppdateres eller erstattes. Utdaterte nettbutikker i

dag pleier derfor a flytte over til et mer moderne rammeverk.

Vi skal jobbe med a flytte produktdefineringen fra dagens infoland over til et mer moderne rammeverk, og en plattform
som er mer rustet for fremtiden Det finnes allerede en superrask support-applikasjon der den hgrer naturlig hjemme.
Gruppen skal dermed bli presentert med en liste over allerede vedtatte features, som vi skal implementere over til det

nye support-systemet.

Dette er en gammel applikasjon, brukerne av denne applikasjonen er sulteforet pa enklere flyt, og smartere mater a fa

nye produkter pa luften.

3 STIKKORD

Webapplikasjon

Wizard

Overfgring

Project Phoenix

Abstract

Technology is continuously developing. Both software and hardware need to be updated
regularly to keep up with this rapid growth. Today there are multiple programming languages
and technologies that are no longer supported or are no longer being updated. This removes

the ability to update some websites or other software that relied on them.

The main objective of this project is to move PKAdmin which is a part of Ambita’s current
Infoland web application to a more futureproof platform. Design and implementation were
done by following user stories and requests from the product owner. The outcome of this
project was a newly designed modal that could edit and manage products listed in Infoland’s

web application.

Acknowledgement

We would like to thank our supervisor Sidney Pontes-Filho for helping us write this bachelor
thesis. The advice he gave us had a huge positive impact on this report. His support and

guidance throughout this semester are something our group is very grateful for.

We would also like to thank everyone at Ambita AS, especially Dennis Hernando Knudsen for
sticking with us until the very end. Their advice and support helped us a lot when working on

the features for this project.

Summary

Technology is always changing. Outdated online web applications tend to move over to a
new framework that is more suited for the future. Infoland is an old application, and its users
wants a faster and smoother experience when managing its products. In this project, we
worked on moving the PKAdmin of Ambita’s Infoland over to a more robust and modern

framework.

This report goes through the development process of Project Phoenix. It covers the technical
theories, tools and technologies we used along the way, as well as the different method we

used such as scrum.

We designed and implemented the features of Infoland according to the user stories
provided to us by the product owner. We ended up with a very reliable, accessible and

optimized modal that is also easy to use.

Content

Y o1 4 - T PSP P PRSP PPR R SPPRR 3
ACKNOWIEAGEMENT ..o e 4
TUT 001 0 0 1 VPRSP PP PP PP P PPPPPPPPPPPPPPPPPN 5
LIST Of fIGUIES ... 10
LISt OF TabIES ... 13
[N oo [0 4 o] o FON O ST PP UUPPRPRUPPRR 14
I 2T Tol =4 o U o o IO TSP PSSP P PP PPPPRP 14
1.2 ADOUL AMDILA AS ..ot 14
L3 TRE PIOJECE ... 15

2 TeChNICAI TREOTY ...t 16
2.1 Programming LANGUAEESuuueiiiieeee ettt ettt e e e e e ettt e e e e e e et aeeaeaa e 16
0 N R 1Y OO OO PU SRR 16
N A O T OO UPPRP 16

B T T 01 TSRO SRR 16
A - 1Y N Yol] o SRR URR P 17
T Y o TN Yol | o) USRS SRR P 17
N R S o) 3 [OO UPPP 17
N O A - Y- OO URR 17
2. L 8 PlaY 2 .o 18

2.2 Database TEChNOIOGYcoouviiiiiic e 18
R oo 1 ={ ¢ SN © | PRSPPI 18
2.2.2 AMAZON WED SEIVICESooiiiiiiiii ettt sae et et 18
2.2.3 AWS AUFOI@ ..ttt e e oottt e e e e ettt e e e e e ettt e e e e e e e 19

2.3 Integrated Development ENVIFONMENToooiiiiiiiiiiii e 19
2.3 L INTEIIT IDEA.ooieeeeee et 19
2.3.2 VisUl STUAIO COB.......oiiiiiiiiiiieie et 20

2.4 VErsion CONEIOL.......ooiiiiiiiii ettt e e e nee e 20
S R C 1 TS OPURR 20
24.2 BIEDUCKEL ...t 21
2.4.3 JITa SOTEWAIE ..ottt ettt 22
244 CONFIUBNCE ..ot 23

S I Yol ¥ 1o o TSR PPPPPRUR 23
2.5, 0 SPFINT .o e 23
2.5.2 SPIINE PIaNNING ..ottt ettt 23

2.5.3 Daily SCIUMooiiiii e 24

2. 5.4 SPIINE ROVIEW 24

3 Objectives & REQUIFEMENTS...........ooiiiiiiiii ittt 24
BLL ODBJECEIVES ... 24
BL2 RUIBS ... 25
B3 REQUINEMEBNTS .. 26
S O E T) o] ¢ =3 USRS SPPPPPPURR 26
B4 L TRE MO ...t 26
342 TRE WIZANM ...ttt 28
B4 3 TREIENLILY ..ooviieie et 29
34,4 The dESCIIPTIONoi ittt ettt ettt et et eerbe e e e bt e steeetbenseens 30
BA.5 T AEIVEIY ...ttt ettt ettt ettt e enra s 30
34,6 ThE FEIAEIONS ...ttt ettt 31
347 TRE OFAEIINEG ...ttt ettt e be e e sare e 32
34,8 THE @XECULIVES ...ttt ettt ettt ettt ettt entee e 33
B0 TE PIICE ..ottt ettt ettt ettt et et a ettt n e e e e bt et e ntrentre s 34
34,10 ThE PArAMIELELS ...o.eiiciiieie ettt ettt ettt et e et et e e e e bt e sseentreenre s 35
3.4.11 The QUEROTIZATION ..ottt 36
3412 TRE @PPIOVAL...ci ittt 37

4 Method & MAterial.........ocuoiiiiiei e 39
L R o o 1= C o] U1 o USSR 39
4.2 Project Organization............ooii it 39
A2 0 TaSK GIVET ... 39
A o[Tot i 1o o) PP PRR 39
4.3 DevelopmMENt LOOISoooiiiii i 39
A3 L ALISSIAN ..ottt 39
N C 1| PP UPTU PR PPPPRN 40
B33 BItDUCKEL ...t 40
R 11 = BT 1 1] RSP SPRR 41
A35INTEHIIIDEA . ..ot 41
4.3.6 VisUAl SEUAIO COUR.......ooiiiiiiiii e 41
B.3.7 SIACK. ...t 41
.38 GOOBIE DOCS......cutiiiieiitiie e 42
4.3.9 Daily dOCUMENTATION ...ttt 42
4.4 IMPIEMENTALION ...ttt 42
4.4.1 Implementation rEQUITEMENTSiiiiiiieti ettt ettt e etee e e nee e 42

A B LT o I o D ol A0 =S PPPPP PPN 42

4.4.3 Used tECHNOIOZIESvvei i 47
4.4.4 Used programming [ANGUABESvviviiiieti ettt 47

D RESUIES ... 48
5.1 FUNCLIONAlItY & DESIENoeiiiiiiiiieee e 48
.l LTREMOUAL ...ttt 48
S5.L2TREWIZANA ..ottt 49
5.2 Frontend DevelopmMENTc..oiiiiiii e 50
LT 2 R I T=N 44 To o - PSPPSR 50
5.2.2 TRE WIZATA ...ttt ettt 51
5.2.3 NAVIATION DAl ...eiiiiiiiic e 54
T A (TR o =T o PSPPSR 55
5.2.5 The dESCIIPLION ...ttt ettt e ettt e b et eeneeeneeenaeennes 58
5. 2.8 TNE AEIIVEIY ..ottt ettt neeenaeenae s 60
5.2.7 The FEIAEIONS ...ttt ettt 62
5.2 8 ThE OFABIINGeviiiiie ettt et e e et e e enbaeeaaeea 65
5.2.9 ThE EXECULIVESoiiiiii ettt ettt et et e et e sat e st e eneeenaeeeees 67
5.2 A0 TRE PrICE. ..o 68
5.2, 11 TRE PATAMIEBLELSoiiiiieeitee ettt e et e et et e et e e enbeeeaae e 69
5.2.12 The @UENOTIZAtIONS.eiiiie ettt 70
5.2.13 TRE @PPIOVAL.....iiiiiiiiiiiee ettt 70
5.3 Backend DevVelOPMENToooiiiiiiiie e 71
LS 0 Y PP URR U PPPPPRRRRNE 71
T I AN o I =L T - PP URRUUPPPPPPPRRNE 80
5.3.3 Identity FUNCLIONAITEY ...o.vooiiii s 88
5.3.4 Description functionalityccccoooiiiiiii i 92
5.3.5 Delivery functionality.............cc.oooiiiiiiiii e 94
5.3.6 Relations fUNCLIONAIILYooiiiiiiiie e e 94
5.3.7 0rdering fUNCHIONAIILYooiiiiie e 99
5.3.8 Price fUNCUONAIITY oot 99
5.3.9 Parameters fUNCUONAlITYoooiiiie e 99
5.3.10 Authorizations fuNCioNAlitycooiiiii e 99
5.3.11 Approval TUNCLIONAIILYoooviiiiiieeeeec e 99
5.4 FINAI TESUILS ... 100
B DISCUSSION ...t 101
6.1 Design EVAlUALIONoiiii e 101

5.2 DEVEIOPMENT PrOCESS.cciiiiiiiieieiee e

7 Conclusion

8 References

List of figures

Figure 1 The Modal deSCriptioN.....ccuuiii it e e 26
Figure 2 NeW ProdUuct DUTTONiiiiiiic e e 27
Figure 3 Edit product DUTTONiiiiiic et 27
FIgUre 4 Blank MOdal.....oueiiiiicceee e 28
Figure 5 The Wizard deSCriptioN.....c..uiii it e e etaae e 28
Figure 6 The [dentity deSCriPtioN ..oo.uiii it 29
Figure 7 Presentation of the identity feature ..o 29
FIGUIE 8 The deSCIIPTION ..uiii ittt ettt et e e e e e e e e e e s etaaee e 30
Figure 9 Presentation of the description fEatUrec.viiiiiiiiiiiiiiccee e 30
Figure 10 The delivery deSCriptioNiiii et e e 31
Figure 11 Representation of the delivery feature ... 31
Figure 12 The relations deSCriPTiONiciiiiiii et 32
Figure 13 Representation of the relations feature.........cccoovviiiiiiiiiic e 32
Figure 14 The ordering desCriptionooocuuiiiiic et 33
Figure 15 Representation of the ordering featurecccoooiiiiiii e, 33
Figure 16 The executives desCription ...cc.uuuviiii i 34
Figure 17 Representation of the executives featurecooeoioiiiiiiiii e 34
Figure 18 The price deSCriPtioNiii it 35
Figure 19 Representation of the price feature.........cooviiiiiiiiiiiiii e 35
Figure 20 The parameters desCriptioni i 36
Figure 21 Representation of the parameters featurecccccooviiiiiiiii e 36
Figure 22 The authorizations desCription.........ooiiiiiiiiiic e 37
Figure 23 Representations of the authorizations feature ..o 37
Figure 24 The approval desCriplion . ..cooiuiiiii e 38
Figure 25 Picture of Nighlights. ... e 40
Figure 26 Picture of our project folder. .o 43
Figure 27 Picture of filesin each folder. ... 44
Figure 28 View.tag CoOe SErUCLUIE ..o 45
Figure 29 styles.5CSS COUR SEIUCTUIE ...oiiiiiiiiiee e 45
Figure 30 controllers.ts CoOde StrUCTUIE ..uvuiiiiiii e 46
FIGUIE 31 LAPTOP SPBC wuvniiiiiie et 47
FIgUre 32 Modal fEatUIE ... 48
Figure 33 The identity fEatUIe e 49
Figure 34 view.tag of edit-products Modaloooviiiiiiiii e 50
FIUIE 35 Te MOl SCSS ..ot 51
Figure 36 styles.scss of navigation bar in Modalcccevvveeiiiiiiii e 52
Figure 37 styles.sCss Of the WIZardcoooeevveiiiiec e 53
FIgure 38 NaVigation Dar ..o 54
Figure 39 view.tag of the Navigation Dar.........cccooiiiiiiii e 55
Figure 40 styles.scss of the Navigation Dar ..o 55
Figure 41 Final result of the wizard feature ..o 56
Figure 42 Final code for the identity ...oooceeeeeiiieec e 57
Figure 43 styles.scss of the identity feature ..o 58
Figure 44 Final result of the description feature ... 59
Figure 45 Final code for the description feature.......c..vvviiiiiiiiii e 59

10

Figure 46 styles.scss for the description feature...........ccoooviiiiiiiiiii e 60

Figure 47 Final result of the delivery feature ..o 61
Figure 48 Final code for the delivery featureoooiviiiiiiiicc e 61
Figure 49 EXample COAE L ..o 62
Figure 50 styles.scss Of the delIVEINYooiiiiiii e 62
Figure 51 Final result of the relations feature.........ccoovviiiiiiiii e 63
Figure 52 Final code of the relations feature part 1.........cooveiiiiiiiiiiiiiieecee e 63
Figure 53 Final code of the relations feature part 2.........ccocvviiiiiiiii i 64
Figure 54 styles.scss of the relations Part 1 .ooovveiiiiiiie e 64
Figure 55 styles.scss of the relations Part 2 .oovveeoiiiiieece e 64
Figure 56 styles.scss of the relations Part 3 ... 65
Figure 57 Final result of the ordering Wizardcoooiiiiiiiiiiii e 66
Figure 58 Final code of the delivery feature.......cvviiiiiiiii e 66
FIgUre 59 EXamMPIE COUR 2 .ooiiiiiiiiiieeiie et 67
Figure 60 styles.scss Of the deIIVEIYcoiiiiiii e 67
Figure 61 Final result of the executives fEaULIeooiviiiiiiiiii e 67
Figure 62 Final code of the executive feaUtre.........ccoovviiiiiiiii e 68
Figure 63 Final result of the parameters featureoooviiiiiiiii e 69
Figure 64 Final code of the parameters feature.......oouviiiiiiiiiii e 69
Figure 65 styles.scss of the Parameter.........iii i 70
Figure 66 Figure of NOW APIWOIKScoiiiiiiiiic e 71
Figure 67 Figure of /api/ProduUCtTYPe.JaVaccviiiiuiiiiiie e 72
Figure 68 Figure of product_type database tablecccooviiiiiiii e, 73
Figure 69 api/ProdUCtTYPES.JAVA ...ccuvi it 73
Figure 70 LogisticsProductTypeMapPerJavaccooviuviiiiiiiee e 74
Figure 71 ProdUCtTYPESEIVICE.JAVA ..oiiiiiiiiiiiie e 75
Figure 72 LogisticsProductTypeController.javacoccvvveiiiieiiiiiiiiieceeeeecece e 76
Figure 73 models/ProductType.java Part 1......cc.coooviiiiieeiiee e 77
Figure 74 models/ProductType.java PArt 2cc..ceocurieiieeeeee e 78
Figure 75 /mapping/MetaMapPer.JaVaccuceccee e 79
Figure 76 LOGISTICS.FOUTES PArT 1 .oueiii i 79
Figure 77 LOZISTICS.FOUTES PAIT2 wuuueiiiiiiiieiee e e e e e e e e e e 80
Figure 78 Product-data.yamlo 81
FIUIE 79 1,501 PArt Lo 81
FIUIE 80 1.S1 PArT 2. e 81
FIGUIE 81 ULILJAVa..uuiiiiii i 82
Figure 82 LogisticsProductTypeServiceTest.java part L........ccooovvvviiieeiiiiieciieeeeeeeeee 83
Figure 83 LogisticsProductTypeServiceTest.java Part 2........coovvvvvveeeei e 84
Figure 84 LogisticsProductTypeControllerTest.java v 85
Figure 85 url/productCatalog/tyPeS.tS . coomrei i 86
Figure 86 api/productCatalog/IogistiCS/TYPES.ES . .eeiiiiiiee et 87
Figure 87 app/dataserViCeS/TYPES.ES ..ooeiiiiiee e 88
Figure 88 The identity controller.ts COUE ...t 89
Figure 89 init function in the identity controller Class.........cccovvviieiee i 89
Figure 90 EXamPle COAR 3 it 90
FIUIE 91 CheCKDOX STAtESvveriiiiieee e 90
Figure 92 The tag.hasTradeType fUNCLIONooiii i 91

Figure 93 Ccalling hasTradeType(tradeType) in VIEW.TAgcooiviiiiieiiiiie e 91

Figure 94 Checked and unchecked checkboXesc.vvvviiiiiiiiiiii e 91
Figure 95 The description controller.ts Codeoooviiiiiiiiii i 92
Figure 96 init function in the description controller class.........ccccoveiiviiiiiiiiiiiiieeceee 93
FIGUIE 97 IMOUNTING T ..o eeeiiiiiiiie e e e e e e e e e e e b e e e e e e e e aast e aeeees 93
Figure 98 UnmoUNTINg the Ta8S.....cciiiiiiiiiiiceee et 93
Figure 99 WizardContentRelatioNSTag .c.uuuviiiiie i 94
Figure 100 Presentation of the relation DOXesSccovviiiiiiiiiiiiii e 95
Figure 101 init function of the relations class Part 1........ccocvieiiiiiiieiiiiieee e 95
Figure 102 init function of the relations class Part 1.........cccccvveiiiiiiiieiiiiiiee e 95
Figure 103 Value ChECKiiiiiiiiiie et 96
Figure 104 The relations: add fUNCLION ...o.viiiiiiiic e 96
Figure 105 The relations: remove fUNCLIONcouviiiiiiiii e 97
Figure 106 Google chrome CoNSOIE rESUILScvvviiiiiiiiiee e 97
Figure 107 The relations: counter fUNCLIONc..viiiiiiiii e 98
Figure 108 The relations: check all and remove funCtion..........ccociiiiiiiiiii i 98

12

List of Tables

Table 1 Different HTTP methods
Table 2 Final results of features

13

1 Introduction

1.1 Background

Technology is growing fast and tools used for programming need to be updated or replaced.
Outdated online web applications tend to move over to a more modern framework. Our
group will work on moving the Productcatalog Admin (PKAdmin) of Ambita’s Infoland over to
a more robust and modern framework, and a platform that is more suited for the future. A

fast support-application already exists where this new application can be implemented.

PKAdmin is an old application, and its users wants a faster and smoother experience when
managing its products. It uses JavaServer Faces (JSF) and Enterprise JavaBeans (EJB), which is
no longer supported or updated. We will design and implement the features according to the
user stories. The product owner has already created a list of features that is to be

implemented over to the new support-application.

1.2 About Ambita AS

Previously named “Norsk Eiendomsinformasjon”, Ambita is a technology company that
focuses on delivering digitalized property market. The company has a firm vision of creating a
more effective and open real estate market in Norway, hence the name “Ambita”, which

means ambition.

Thousands of customers use their services to view and receive digitalized information about a
property or a construction project. With an optimized and user-friendly web application, they
provide solutions and detailed information to their customers. The company ensures a good
connection with their users, while also maintaining a tight management to secure an easier
and more effective way of digitalizing prop tech. Property technology is the use of
information technology in property market. It is used to help consumers and businesses to

buy, sell and manage properties in a more effective way. (Tomagruppen, 2020)

14

1.3 The Project

We named this project “Project Phoenix”, named after the bird of resurrection, will focus on
redesigning and implementing the old PKAdmin application over to a more modern system.
We will use scrum as our development framework, and switch from JavaServer Faces (JSF)

and Enterprise JavaBeans(EJB) over to Riot.js and Play 2 Framework.

The product owner has created a list of features from PKAdmin that is to be implemented
over to the new version of Infoland. These features are called “user stories” and show a
detailed image and description of how the feature are going to be implemented. Most of

these features already exists, and just needs to be reimplemented by using Riot.js and Play 2.

Our group will be working alongside their development team, but not on the same project.
We will mainly be focusing on the user stories while maintaining a tight communication
during the development process. To ensure a good communication between both parties,
our group will join their daily scrum and sprint meetings. We will keep each other updated
during the development process and stay in contact by using development tools such as

“Slack”.
We will be using multiple development tools and services used by Ambita to get a better

understanding on how large companies operate. We will also familiarize ourselves with these

tools to ensure an effective and efficient development process.

15

2 Technical Theory

2.1 Programming Languages

2.1.1 HTML

Hypertext Markup Language (HTML) is the main skeleton of a website (w3, 2020). It allows
developers to display forms, modals, inputs, buttons, images and other elements. The
skeleton is structured to have a “head” and a “body”, both having their own respective roles
on the website. The head often includes the title and link to a stylesheet, as well as the
background or a navigation menu depending on the website. The body has all the
functionalities and elements. These are implemented through the use of the tags syntax.
Each element can be customized to have their own style, identity and class, which is inserted
inside the tags. The most common way to style the elements is using Cascading Style Sheets

(CSS).

2.1.2 CSS

If HTML is the skeleton, then Cascading Style Sheets (CSS) is the skin of the skeleton. It is used
to style and animate the elements in an HTML file (w3, 2020). This includes styling its size,
position, color, text font, image and even animation. They are implemented through
connecting the tags inside the HTML-element with the id or class of the CSS. The styles are
often structured and identified by using either a dot (.) for id, or a hashtag (#) for class. The id
is mostly used on a single HTML-element, while the class is used on the larger elements such

as a container.

2.1.3 SCSS

Sassy CSS (SCSS) is often described as CSS with superpowers (sass-lang, 2020). It is a powerful
CSS extension language that allows for a more easy and flexible styling experience. It is
compatible with every CSS version and includes more features and abilities to give the styling

experience more fluidity.

16

2.1.4 JavaScript

JavaScript is a high-level programming language used to create functions to make websites
more dynamic and interactable (developer.mozilla, 2020). It is an easy-to-understand, yet
powerful programming language and is one of the most recommended languages to use

when it comes to web programming (Veeraraghavan, 2020).

2.1.5 TypeScript

TypeScript is a powerful open-source programming language used to develop JavaScript
applications. It can be used to develop both the client-side and the server-side part of the
application. TypeScript is a superset of JavaScript, meaning that a code written in JavaScript
can also work in a TypeScript program (tutorialspoint, 2020). Typescript is compiled to

Javascript code.

2.1.6 Riot.js

Riot.js is a free open-source component-based Ul library (Guarini, riot.js, 2020). Its syntax is a
combination of HTML layout and JavaScript logic. It uses tags to identify each element just
like how HTML and CSS are used together. A Riot component is structured with a named tag,
and the scripts are implemented inside that tag. Riot.js supports all modern browsers, but

browsers such as Internet Explorer 11 requires an older installation of Riot

2.1.7 Java

Java is an object-oriented programming language used almost everywhere. It is designed to
run on all platforms that supports Java (edureka, 2020). The syntax is similar to C and C++ but
does not require any knowledge of memory allocation since it does it automatically
compared to the C language. Java is also one of the most popular programming languages
used by developers and is also used on web applications on both the client and server side

(Veeraraghavan, 2020).

17

2.1.8 Play 2

Play 2 is an open-source web application framework that uses the Model-View-Controller
(MVC) structure. It is written in Scala and is compiled using the Java Virtual Machine
Bytecode (JVM Bytecode) (Play, 2020). It is used by developers to optimize productivity when

developing web applications.

2.2 Database Technology

2.2.1 PostgreSQL

PostgreSQL is a powerful open-source relational database management system (The
PostgreSQL Global Development Group, 2020). It is known for its extensibility, reliability and
optimized performance. PostgreSQL comes with many features that helps develop
applications aimed at protection and managing data. It is also a very flexible system, allowing
developers to use different programming languages without having to recompile the

database.

2.2.2 Amazon Web Services
Amazon Web Services (AWS) is a well-known cloud computing platform that provides
excellent services and APIs to both individuals and large companies (Amazon web services,
2020). It comes with multiple tools that helps developers maintain, manage and administrate
web applications or other projects.
AWS uses a “pay-as-you-go” business model, meaning that the services used is only limited
by how much budget an individual or a company is willing to spend. These services include,
but are not limited to:

- Computing

- Storage

- Database

- Analytics

- Application services

- Deployment

- Management

18

- Mobile

- Developer tools

The AWS technology is maintained and managed by Amazon. They are implemented at
server farms all around the world. A server farm is a collection of computer servers that often
consists of thousands of these. In case of emergency, these server farms often have a backup

servers that will automatically take over the primary server.

2.2.3 AWS Aurora

Amazon Aurora (AWS Aurora) is a relational database management service developed by

Amazon. It is compatible with both PostgreSQL and MySQL (Amazon web services, 2020).

Aurora aims to improve performance, flexibility and reliability while also having automatic
allocation of database storage. It also provides performance metrics and fast database

cloning for developers.

2.3 Integrated Development Environment

2.3.1 Intelli) IDEA

Intelli) IDEA is an integrated development environment (IDE) developed and maintained by
JetBrains (tutorialspoint, 2020). It is written in Java and Kotlin, and is available in multiple
operative systems including Microsoft, MacOS and Linux. IntelliJ IDEA offers multiple versions

to suit individual developers or large companies.

The IDE offers powerful tools that aims to improve developers coding experience. Like other
IDE’s, IntelliJ IDEA provides coding assistance, built in tools integration, plugin systems and
supports multiple programming languages. Java and Kotlin are the standard programming
languages, while the ultimate edition offering more. It also offers technologies and

frameworks for both the community and the ultimate edition (jetbrains, 2020).

Intelli) IDEA also offers an in-built version control that supports Git, GitHub, Azure DevOps

and more, giving developers more options on how they want to manage their project.

19

Installing plugins also allows the IDE to be compatible with other version control services like

Bitbucket (jetbrains, 2020).

2.3.2 Visual Studio Code

Visual Studio Code (VSC) is a source-code editor developed by Microsoft. It is available on
MacOS, Windows and Linux (Microsoft, 2020). Despite having features that mimics an IDE,
Visual Studio Code is not an integrated development environment. Instead it focuses on
being highly customizable and optimized with the installation of extensions to fit the

developer’s needs.

It comes with embedded features such as debugging tool, syntax highlighting, code
completion and more. With the option to install extensions, Visual Studio Code can become a
very powerful tool, giving its users the freedom to develop and code however they want. It is
basically an IDE creator tool that allows developers to create their own development

environment akin to an actual IDE (Microsoft, 2020).

Unlike an IDE, which is often limited to certain programming languages, Visual Studio Code is
not limited and can be customized to fit any language. This is because VSC is an editor and
can be optimized and built in a way that allows the user to code in different languages.
Despite being highly customizable, Visual Studio Code does lack some features that is only
offered using an IDE. However, this does not limit VSC as it can be used in tandem with an
IDE. This is because unlike an actual IDE, Visual Studio Code does not structure projects in a
system like IntelliJ IDEA. Instead it allows the user to open multiple directories in a
workspace. This allows developers to open projects created in an IDE and still develop it

through the use of Visual Studio Code.

2.4 Version Control

2.4.1Git

Git is a powerful version control system that tracks the development of a source code. It is

used by programmers to coordinate the changes on a project during development but is not

20

limited to source codes only. Git can also be used to track changes on any type of files

including word documents, multimedia and texts.

Version controlling a project is done using the commit, push and pull commands. Commit is a
command which allows you to save your code either in a local branch or a remote branch, it
records changes in the repository. Pushing sends the recent commit history from your local
repository to Github or other version control applications. Pulling is when you download any
changes from the GitHub repository, to merge with your local repository (sparkfun, 2020).
Each project can also “branch” out of the master file, allowing developers to work on their
own branch of the project. This can be done by using command lines such as “checkout”. The
developer can then ask for a “pull request”, which basically asks a senior programmer to view

the branched code to be merged with the master file.

Each commit are stored in a directory called “repository”. Here, the user can view and
manage the changes made on the project. Git changes and commits can be tracked through
version control services. The most common is GitHub, which is used to track projects both
private and public. Larger companies who prioritizes privacy and security, will most likely use

other services to track changes and commits.

2.4.2 Bitbucket

Bitbucket is a version control repository service like GitHub. It is owned by Atlassian and has a
lot of similarities to GitHub in terms of functionality (Atlassian, 2020). It is clearer and
appealing in terms of visual presentation and is favored by large companies for its easy-to-

use management systems.

Bitbucket has many features that helps developers manage a project. It keeps tracks of
commits and changes made on the project, while also being simple and easy to understand
(Atlassian, 2020). Bitbucket also offers a clean visual presentation over branches and pull
requests. It also offers an in-build Kanban board to help manage and develop features for a

project.

21

Most large companies prefer to use Bitbucket version control instead of GitHub. This is
because Atlassian offers multiple services for managing large projects. The most common
services used together with bitbucket are Jira Software and Confluence. This helps with
coordination, management, deployment, and communication on large companies. It is also

used by individuals or small groups working on larger projects.

2.4.3 Jira Software

Jira Software is an issue tracking and project management product owned by Atlassian
(Atlassian, 2020). It is most used together with Bitbucket to view, manage and develop
projects. Jira offers multiple features and tools to help developers coordinate and

communicate when solving an issue or managing a project.

Jira has an in-built Kanban board, making it a versatile tool for software developers to keep
track of features to be implemented. A Kanban board is a tool for project management and is
often used by larger groups of developers when working on a large project (Atlassian, 2020).
The board is divided into columns, each representing a stage of its development process. The
most common naming for each column is: “to-do”, “under development”, “testing” and

“done”. The columns can contain features that is to be implemented or is finished depending

on how the project is managed.

Jira Software also offers additional features that keeps track of project issues (Atlassian,
2020). These includes, but is not limited to:

- Filtering of issues

- Project Releases

- View history

- Report management and analysis

- Create user stories & issues

- Create a Git branch directly from lJira

It also offers Slack integration. Slack is a communication software used by developers. It is

22

comparable to Skype and helps when coordinating issues or managing a project on-the-go.

Jira also allows developers to create pages to help visualize and write features and ideas.

2.4.4 Confluence

Confluence is a collaboration tool used to help developers collaborate, coordinate, and
manage information efficiently (Atlassian, 2020). The contents are created, organized, and
managed using pages, blogs and spaces (Atlassian, 2020). It is used in coordination with Jira

Software by large companies to efficiently share information and manage projects.

Confluence has a robust and clean interface that allows for easy interaction. It offers its own
collaboration tools that can create, edit, comment, and manage work. Confluence also has its

very own text editor, allowing for an advanced and easy way to edit pages.

Confluence offers a way to manage user permissions and restrictions, making administration
and user management simple to manage. The permission and restrictions can prevent or

limit users from viewing certain contents and information within the Confluence page.

2.5 Scrum

2.5.1 Sprint
Scrum is an agile method for project development and has multiple stages, one of them
being sprint. A sprint is a way to continuously add incremental features during a short period

of time, which can range from two weeks up to a month (Scrum, 2020).

The scrum process is usually facilitated by a “scrum master”, who plans the meetings and
coordinates the team. The scrum master is responsible of making sure that the development

process stays on track and making sure that there are no issues during the sprint duration.

2.5.2 Sprint Planning

A sprint usually starts off with a sprint meeting led by the scrum master, and usually takes
place at the start of the week. During this sprint meeting, a goal and objective will be planned

for implementation during the sprint duration (scrum, 2020).

23

Both the goal and objective can vary depending on the current situation. This could either be
a fix for an issue, or a new feature. Once the team has settled on a certain goal, the scrum
master will then organize the team and set everything up for development. This is usually
visualized by using a Kanban board. When everything is ready for implementation, the sprint

will start.

If the goal or objective is finished before the sprint duration ends, then the team can start
working on a new feature or issue right away. The scrum master will notify the team and

address the current situation. This usually happens during a daily scrum meeting.

2.5.3 Daily Scrum

A daily scrum is a short meeting taken place every day. During this meeting, the team will
update each other about the development process (Scrum, 2020). Each developer on the
team takes turn on updating each other about their current situation, what they are currently

working on and if there are any issues.

2.5.4 Sprint Review

Sprint reviews are done after a sprint has ended, usually by the end of the week. During this
review, the team will go through what they have implemented, and which issues has been
addressed (Scrum, 2020). In short, it is a summary of the sprint process. A large company
usually has multiple teams working on a project. During a sprint review, each team will

present what they have accomplished and give a quick summary of their progression.

3 Objectives & Requirements

3.1 Objectives

Our objective is to move the current product wizard from the old JSF-project
ProductCatalogAdmin (PKAdmin) over to the new support application. This is done through

the implementation of user stories, a list of features assigned to us by the product owner.

24

The current product catalog is outdated and needs a new home. Ambita’s current support-
application is fast and up to date with the current modern technology. Our group will be
redesigning and implementing both new and old features over to the new support

application.

These features each have a description and an image of how it should look and function.
Most of these are already implemented on the back-end part, and just needs to be converted

over to the new framework with a new design.

According to the product owner, the scope of this project is bigger than a bachelor project. It
means that we work with as much as we can. The Infoland developers will take over the
project and complete it. Our group will start with the simple ones first to familiarize ourselves
with their system. Once we get the hang of it, we will then proceed to implement the other

features for the product catalog.

3.2 Rules

Ambita is a relatively large company with a professional work environment. They have rules
and standards that we must follow. During the development process, our group are required

to follow these certain requirements and ruleset:

Technical requirements:
- Use the computer they have provided for us (For security reasons).
- Follow the project & code structure.
- Join daily scrum meeting (Not required but recommended).

The rules are, but is not limited to:
- Not share or leak any private information or direct source code to the public.
- Not lose the ID-card given to us by the company (Required to enter building).
- Wear pants during work.

- Follow the contract regarding anti-corruption.

25

There are no requirements for when or how long we will have to work on the project every
week. So, we decided to set a minimum requirement for ourselves. Our group decided to

meet up and work during Mondays, Tuesdays and Fridays.

3.3 Requirements

The requirements was given to us by the product owner. Our group had to implement the
“user stories”, which are basically features that is to be implemented in the PKAdmin. It
shows a description and an example of how it should work and function. It is not required for
our group to finish all user stories given to us by the product owner. We can choose which

feature to implement first and continue working on the other incrementally.

3.4 User Stories

3.4.1 The modal

Our first objective is to setup the modal, which is a dialog box window that is displayed on
top the current page (w3schools, 2020). It is a simple feature and should be the main

skeleton and background for the user stories. The description for this feature is as follows:

IN-6997 / IN-6998

The modal

& Attach Create subtask & Linkissue v

Beskrivelse

As a product responsible,
I want to easily open dialog to create new product or edit existing product,
so that | can quickly edit one or many products within a short timeline.

Figure 1 The Modal description

The objective of this user story is to add two new buttons in the support application, one that
creates a new product and one that edits the existing products. The “edit products” button
already exists and opens the old wizard for editing products in Ambita’s product-catalog. The

only thing that our group needs to implement is the “create product” button, which should

26

also open the new modal. Here are some illustrations that shows how it should be

implemented:

ambita

Organisasjon
® Drammen kommune

Rediger organisasjon

Endre parametere

5 Endre Standard Meglerpakke |

+ F Opprett ny. avdelifgec—
+ Nyit produkt

Produkter

Avdelinger Aktive

Drammen komm

ambita

v

Produkter

Drammen kommune

K3005INFOLAND

Produkter

Status Produkt Hovedsaksbehandler
Aklivt 01 NORKARTKAI
Basiskart som vektordata Norkart Kart API
AKlivt 0
Basiskart som vektordata, utvalg
AKlivt 0
Eiendom og bygning - pakke
AKlivt K3 RKS |
Eiendomskart Norkart AP automatisk
AKlivt 0 K3

Aklivt

Eiendoms- og bygningsinformasjon

Akl
Forenklet situasjonskart

Gialdenda araalblaner / raaularinosnlaner

Norkart AP automatisk

Norkart AP| automatisk

Narkart APl automatisk

Figure 2 New Product button

Aklive v
Frist Pris
3 virkedager
3 virkedager
15 virkedager | Innkjop: £32.00
15 virkedager Innkjep: 8300
15 virkedager Innkjep: 129.00
15 virkedager | Innkjop:
15 virkedager Innkjep: 106,00

Produkt
WI30050100

a Produkter

Rediger produkt
W Rediger tags
Endre parametere

i Last opp eksempel

En del av

Meglerpakke 1, bebygd eiendom

WI30

Eiendom og bygning - pakke

Meglerpakke 2, ubebygd tomt

WI30
Infopakke ubebygd tomt

WI130050100

Eiendoms- og bygningsinformasjon

Detaljer Typer
Kode V 100 Produkt Vanlig produkt
Eiendoms- og bygningsinformasjon
Gruppe Eiendom
Leverander K3t FOLAND
Drammen kemmune Inndata Matrikkel
Ekstern referanse | NK30050100 Kjgp Bestiling
Bransje Eiendom og Takst Levering
B Anl
Byg9.09 Anlegg Media PDF-gak
Qfientlia forvaltning
Andre Pris Fast
Kategori Produkt uten kategori Tilgjengelighet | For alle
Salgsklient Infoland.na
Infoland
Status Aktivt
Aktiv fra
Frist
Rangering 10
Pris Net: 236.80
Vat 296.00
Innlinn: 4RG AN

Figure 3 Edit product button

27

Saksbehandlere

#

Brukernavn

RKARTAP

art API automatisk

Torunn Fredriksen

Endre produkt

Figure 4 Blank modal

3.4.2 The wizard

A wizard is a way to help the user setup a program. In our case, we will create a wizard to
guide the user through the process of creating or editing a product. The wizard will be the
entirety of all the other user stories that are to be implemented. These user stories will be
separated and can be navigated to by the navigation menu. Our goal for this user story is to
develop a main frame for the other user stories to be implemented, including a navigation
bar. We already have a visual representation of how each wizard step should look like.

The description for this feature is as follows:

IN-6997 / [J IN-7008

The Wizard

& Attach Create subtask & Link issue ~

Beskrivelse

As a product responsible,

| want a nice wizard to help me create and update a product,
so that | can maintain products in a secure way

Figure 5 The Wizard description

28

3.4.3 The identity

The first step of the wizard setup is the identity wizard. This will have all the general
information about a product. It should display the product name, product code, product
number, product type etc. Our goal for this user story is to develop a feature that can edit
the identity of a product. We will also create a “details” page on the top left of the wizard

that shows information about the product. The description for this feature is as follows:

IN-6997 / [IN-7009

The Identity

& Attach Create subtask ¢ Linkissue

Beskrivelse

As a product responsible,
| want to easily create new products and maybe change names and numbers on existing products,
so that | can make sure the customers wants to buy them.

Figure 6 The Identity description

A
Systemnavn ‘ Web Infoland (WI) - |

Brukstillatelse og ferdigattest

Leveranderid ‘ K3015INFOLAND |
Midlertidig brukstillatelse er attest som viser at
bygningen kan tas | bruk i henhold til
byggetillatelsen. Ferdigattest er attest som
viser at bygningen er ferdigstilt i henhold til
byggetillatelsen. Nytt produkt

Det er mulig 4 bruke et annet produkt som utgangspunkt for dette nye produktet. Sak det

Produktkode: WI30151000 opp og hent det inn som forslag.

Leverander: K3015INFOLAND Skiptvedt

Produktnummer ‘ | Hent forslag
Pris VAT: 185,

_ e ‘ ‘ ‘ ‘ ‘ ‘
E D

[7] BESKRIVELSE Produktnavn ‘ Brukstillatelse og ferdigattest

& LEVERING Ekstern referanse ‘ |

RELASJONER

Produkttype ‘ Vanlig produkt - |
" BESTILLING
7. SAKSBEHANDLER Produktpristype ‘ Fast - |
@ PRIS

Aktuelle bransjer E,/E\endom&Takst DBankugFinans DByggugAnlegg Doﬂentligfurvatming E,/Andre
PARAMETERE

) TILGANG

Figure 7 Presentation of the identity feature

29

3.4.4 The description
The description wizard is a way to edit the description of a product. It should be simple and
clean, yet powerful enough to act as an editor. Our goal for this user story is to implement a

wizard that can edit and setup the products description. The description for this feature is as

follows:
IN-6997 / [IN-7010
The description
@ Attach Create subtask & Linkissue v
Beskrivelse
As a product owner,
| want to quickly and easy change descriptions on the products,
so that the customers knows what they are getting
Figure 8 The description
N
Beskrivelse
Brukstillatelse og ferdigattest vie - - ont ¥ ize ¥ hd hd
et st som
yeningen er ferdigstilt i henhold til
te N
Produktkode: wi30151000
Leverander: K3015INFOLAND Skiptvedt
Pris VAT: 185,-
Status: Aktiv (.) Lang beskrivelse
- B/ U Nomal v | Fomt v | sie v A v A v
LEVERING
% RELASJONER
Y BESTILLING
. SAKSBEHANDLER
& PRIS
= PARAMETERE
= TILGANG
< come
Figure 9 Presentation of the description feature
3.4.5 The delivery

The delivery wizard is a way to edit the products method of delivery. This should include the
products availability, purchase type and other necessary features that it needs. Our goal for
this user story is to develop a wizard that can setup and edit the current products delivery

methods. This should be a simple and a clean wizard that is easy to use for everyone.

30

The description for this feature is as follows:

IN-6997 / [IN-7011

The delivery

@ Attach Create subtask @ Linkissue v

Beskrivelse

As a product responsible,
| want to say something about delivery time and availability,
so that my customers sees as many products as possible

Figure 10 The delivery description

Kjopstype @ Bestilling Qoppslag QO sek Q) utskrift
Brukstillatelse og ferdigattest
Midlertidig brukstillatelse er attest som viser at Tilgjengelig via Oeor @wboland Onew Oart O
bygningen kan tasibrukihenhold til
yegeti . Ferdigattest er attest som
viser at bygningen er ferdigstilt i henhold til
byggetillatelsen.
Leveringsfrist
Produktkode: WI30151000
Leverander: K3015INFOLAND Skiptvedt Rangering
Pris VAT: 135
Status: Ay (.) Medium | Papir -~ |
= 1D -
Leveringsform @ Elektronisk) Post
|#/ BESKRIVELSE
Tilgjengelighet @) roralle () Foringen () Kunforavialekunder Q) Kun for kontantkunder

7 RELASJONER
Y BESTILLING

7 SAKSBEHANDLER
& PRIS

i-| PARAMETERE
£ TILGANG

Lagre, neste steg

%) GODKJENN

Figure 11 Representation of the delivery feature

3.4.6 The relations

The relations wizard should display, edit and setup the relations between products. Some
products are tied or linked to another product or is simply just a part of a package. Our goal

for this user story is to create a wizard that can edit the products relations.

31

The description for this feature is as follows:

IN-6997 / [IN-7012

The relations

@ Attach Create subtask @ Llinkissue v

Beskrivelse

As a product responsible,
| want to say something about the relations between products,

so that | can create sexy packages

Figure 12 The relations description

A
WI30150010 er en pakke. Her spesifiserer du hvilke produkter som skal tilknyttes.

Brukstillatelse og ferdigattest

Midlertidig brukstillatelse er attest som viser at Sok Q
bygningen kan tas bruk i henhold til

byzgetillatelsen. Ferdigattest er attest som

viser at bygningen er ferdigstilt i henhold til 0O velgalle
byzgetillatelsen.

Ingen valgt

WI30150100 Eiendomsinformasjen
Produktkode: WI30151000)

Leverander: K301SINFOLAND Skiptvedt WI30150102 Kommunale erklringer
Pris VAT: 185 V1301
130
= D 130150

[/ BESKRIVELSE g

se og ferdigattest

8 LEVERING
_ o
& RELASJONER

siktkart
\ BESTILLING

o o o O I o

WI30151800 Tilknytning til offentlig vann og aviep
7. SAKSBEHANDLER
& PRIS

iz PARAMETERE

= TILGANG

Figure 13 Representation of the relations feature

3.4.7 The ordering

The ordering wizard is a way to choose the product type and ordering schema. This wizard
should cover the essentials for ordering and should be simple enough for customers to use.
The main objective for this user story is to develop a wizard that qualifies as an ordering

method. It should also be very simple to understand.

32

The description for this feature is as follows:

IN-6997 / [J IN-7013

The ordering

& Attach Create subtask & Linkissue v

Beskrivelse

As a product responsible,
| want to choose product type and ordering schema,
so that the customers are able to fill out and order what they need

Figure 14 The ordering description

A
Pakrevet informasjon ved kjop av produktet

@® watrikkel) Borett) Forretningsforer () Geografiskutsnitt () Dokument () Province

Brukstillatelse og ferdigattest

Midlertidig brukstillatelse er attest som viser at
bygningen kan tas i bruk i henhold ti
bygzetillatelsen. Ferdigattest er sttest som

r ferdigstilt i henhold til

viser at bygningen e
byggetillatelsen. g Benytt standardskjema for pakrevet informasjon
Produktkode: 130151000

Leverandar: K3015INFOLAND Skiptvedt Skjema

‘ Default matrikkel

Pris VAT: 185~
= 1D

77 BESKRIVELSE
LEVERING

~#’ RELASJONER

% BESTILLING

. SAKSBEHANDLER
& PRIS

i] PARAMETERE

£ TILGANG

Figure 15 Representation of the ordering feature

3.4.8 The executives

The executives wizard will function relatively close to that of the relations wizard. This wizard
should display the products current executives, as well as the other executives available. Our

main goal for this user story is to create a wizard that can edit, display and select executives

for the product.

33

The description for this feature is as follows:

IN-6997 / O IN-7014

The executives

@ Attach Create subtask & Linkissue v

Beskrivelse

As a product responsible,
| need to set the executive officers of a product, quickly,
so that I'm sure the ordered products are produces and delivered asap

Figure 16 The executives description

A
Merk! Endringer her pavirker ikke allerede eksiterende ordre, kun ordre opprettet efter endringen X
Brukstillatelse og ferdigattest
llatelse er attest som viser at
Ferdigattest r attest som Sok Q | 2valgt Fiem alle
n er ferdigstilt i henhold til
& velgale Servicekontor X
Produktkode: WI130151000
Servicekontor Grethe Monica Bogen X
Leverander: K3015INFOLAND Skiptvedt
Pris VAT: 185 Grethe Monica Bogen
sous aee (O O sipteretkommune
Svein Magne (Skipt
= ID D -
#/ BESKRIVELSE
LEVERING
' RELASJONER
YL BESTILLING
& PRIS
i~ PARAMETERE
= TILGANG
- conaem
Figure 17 Representation of the executives feature
h .
3.4.9 The price

The price wizard is a way for the users to edit and display the product price. This wizard
should be very detailed so that it covers all the essentials of the products price. It should also
display a history of the product that shows the date and price of the product during that
period. Our main objective for this user story is to develop a wizard that can edit and add

new product prices, as well as display the products history for price changes.

34

The description for this feature is as follows:

IN-6997 / L3 IN-7015

The price
& Attach Create subtask & Link issue
Beskrivelse

As a product responsible,
I want to be able to set the correct price or price formula,

so that all parties remains happy

Figure 18 The price description

Brukstillatelse og ferdigattest

viser a en erferdigstilt i henhold £l
bygge! .

Produktkode: 130151000
Leverandor: k3015/NFOLAND Skiptvedt

Pris VAT: 185,
Status: Aktiv (.)
&= 1D

BESKRIVELSE
8 LEVERING

RELASJONER
. BESTILLING
i, SAKSBEHANDLER
=
= PARAMETERE
5 TILGANG

5 GODKJENN

Gjeldende pris
Gyldig fra og med dato
Produktpristype Prisgruppe
Pris fra leverander
Utsalgspris
Inkludert MVA
Marginsett
MVA kode
Variabel pris info
Sammensatt pris info
Variabler
Kommunespesifike priser
Kundeprisgrupper
Rabatter
Historikk
Gyldig fra og med dato Pris fra lev. Utsalgspris
01.01.2020 155.00 205.00
10.12.2019 147.48 204.80

Inkl. MVA

270.00

256.00

Lagre, neste steg

3.4.10 The parameters

Figure 19 Representation of the price feature

The parameters wizard should display all the parameters that the product currently has

setup. The backend part of this wizard has already been implemented, and the frontend

should be the same as before. This means that the goal for this user story will not be to

develop, but to re-implement the current parameter feature over to our new wizard.

It should also be optimized to fit the current wizard proportion and size.

35

The description for this feature is as follows:

IN-6997 / [J IN-7016

The parameters

@ Attach Create subtask & Llinkissue v

Beskrivelse

As a product responsible,
| want to set all the nits and bits, cogs and wheels and bolts correctly,
so that the customers are amazed about what the magic machine can produce

Figure 20 The parameters description

A
Parametere
Navn Verdi + Nytt parameter |

Brukstillatelse og ferdigattest AxaptaAccount 3002 W Slett | B Lagre |

Midlertidig brukstillatelse er attest som viser at
bygningen kantas i bruk | henhold til AxaptaProductGroup 1221 WSkt | BlLage |
byzgetillatelsen. Ferdigattest er attest som

wviser ygningen er ferdigstilt i henhold til
byggetillatelsen.

AxaptaAccount v W Skt | B Lagre |

Produktkode: WI130151000

Leverander: K3015INFOLAND Skiptvedt
Tags

Pris VAT: 185~
wwe o (@ omuT x

= 1D
|41 BESKRIVELSE
& LEVERING

- RELASJONER

Y BESTILLING

7. SAKSBEHANDLER
& pris

PARAMETERE

£ TILGANG

%) GODKJENN Lagre, neste steg

Figure 21 Representation of the parameters feature

3.4.11 The authorization

The authorization wizard is a way to set the correct authority for each product so that only a
selected few can view the right products. This wizard should display the different layer of
authorization that Ambita has, and whether it is available for the client or not. Our goal for

this user story is to create a wizard that can both edit and set the authority of the product.

36

The description for this feature is as follows:

IN-6997 / [J IN-7017

The authorizations

@ Attach Create subtask @ Linkissue v

Beskrivelse

As a product responsible,
| want to set the correct authorizations on a product,
so that only the selected few can see my little children

Figure 22 The authorizations description

D Bestem hvem som skal ha tilgang til produktet ved & benytte &n eller flere av disse valgene.
Autorisasjon

Brukstillatelse og ferdigattest Standard produkter x Superadministrator x
Tilgjengelig for klient IKKE tilgjengelig for klient
Produktkode: WI30151000
NYEINFOLAND X v VRYINT_PROD_p7dT X -~
Leverander: K3015INFOLAND Skiptvedt
VITEC_PROD_2j8G X
Pris VAT: 185,
St Aldiv ‘.) I B3 EVRYINT_PROD_p7dT ‘
= ID NYEINFOLAND_CARD_1F4B3

77 BESKRIVELSE NYEINFOLAND

VITEC_PROD_2j8G

@ LEVERING

RELASJONER Tilgj: lig for objekter med datafelt lik IKKE tilgjengelig for objekter med datafelt lik

& BESTILLING

Velg felt fra ordredata

I Velg felt fra ordredata - ‘

1. SAKSBEHANDLER
Skriv inn verdien vi skal se etter Legg til Skriv inn verdien vi skal se etter

& PRIS
- PARAMETERE

Legg til
archiveKey=1901 re)2
archiveKey 310
5 GODKJENN Lagre, neste steg

Figure 23 Representations of the authorizations feature

3.4.12 The approval
The approval wizard will be a quick summary over all the previous steps. It should display the
most relevant changes and have an approval functionality. We have not yet received any

information regarding the visuals, as well as the content it should have. This includes features

like buttons, tabs and other variables.

37

The description for this feature is as follows:

IN-6997 / [IN-7018

The approval

@ Attach Create subtask & Linkissue v

Beskrivelse

As a product responsible,
| want to look over my product, approve and activate it,

so that the customers can buy it as hot bread with butter on

Figure 24 The approval description

38

4 Method & Material

4.1 Project Group

Our group (Group 2) consists of two member, one that studied Information Technology and
the other studied Computer Engineering. This group goes way back and have known each
other for a while making us a good team. We would know our strength and weaknesses.
When we were stuck on something, we could rely on the partner to know how to solve this

issue.

4.2 Project Organization

4.2.1 Task giver

Our Task giver is the company named Ambita. Ambita is filled with professional coworkers
and a has a good atmosphere. The working culture is serious, but at the same time very
casual. We will be receiving our tasks from the product owner. These tasks will be in the form
of “user stories”, that has a description and an image of how the feature should look and

function.

4.2.2 Project advisor

Our project advisor is Sidney Pontes-Filho who is a PhD-student at Oslo Metropolitan
University. We have monthly meetings with our advisor to report back on our progress. Then
asking questions if we are wondering about something. When we started writing the report,
the meetings with our supervisor became more frequent. Sidney provided us with useful

information and even gave us tips and tricks to make our report quality be better.

4.3 Development tools

4.3.1 Atlassian

Ambita uses Atlassian for its products. Some of the products that was used was: Jira Software
and Confluence. We used Jira to review the status of the sprint. We saw the usage of the

Kanban board in a professional setting. Sometimes we would use these programs to see what

39

kind of updates that were made either in the backlog or in the specifications file of the

project in Confluence.

4.3.2 Git

In this project we used Git in a way that it would not destroy the actual application. Before
features and patches goes to production (application that the end users use). It would go
through a beta phase, then it would later be merged with the master branch. We worked in
our own branch. We created a branch out from “dev” which is development. When the
featured was finished, a pull request was made and then waiting for it to be approved. With
git, you can both sync your local branch, by “pulling” and give updates to the remote branch
by “pushing”. Sometimes merge conflicts will appear, these must be solved before pulling
again. A merge conflict will start when the remote repository cannot merge with your local
repository because of the pending changes that could be written over by the commits that

are being merged in (Atlassian, 2020).

4.3.3 Bitbucket

Bitbucket was used in this project to review pull requests that were made into “dev” and
other branches. Developer(s) must approve the pull requests to be able to merge it to
another branch. Sometimes a developer sees trailing whitespaces, an extra newline here and
there. We would then fix the comments that were posted by other developers to get the pull
request approved. There were times when we pushed and pulled new code, thing would not
work as they used to. We open the file in bitbucket then see what changed from last commit.
We can then resolve the issues we were having. New code is highlighted in green and

removed coded is highlighted with red.

45 43 tag.update(});
46 44 });
47 45
43 tag.hasTradeType = (tradeType: TradeTypefpi.TradeType): boolean =» {
46 + tag.hasTradeType = (tradeType: TypesApi.TradeType): boolean => {
45 7 const tradeTypes = tag.product.trades.filter(trade =» trade.code === tradeType.code)};
5@ 48
51 459 return tradeTypes.length > 8;

Figure 25 Picture of highlights

40

4.3.4 Jira Software

We did not use this tool much, the scrum master used it the most. During our daily scrums,
the scrum master would open the Jira software, and go to our current sprint. To show us
status of each task. If something had been updated it would be moved to another column like
“in pull request” or the “done” column. Jira was also used to create sprint tasks and give each

task a story point. Sprint planning is already explained above, see chapter 2.5.2.

4.3.5 Intelli) IDEA

Intelli) was mostly used to write the code for the different APl endpoints which was written in
Java. Intelli) was better than VSC to write the APIs with because its better with Java
development. The reason is that we could access the database values and see these values.
Color highlighting for syntaxes. The swagger notations are highlighted in yellow, so it was

easier to distinguish them. It was also easier to create a database connection to PostgreSQL.

4.3.6 Visual Studio Code

VSC was used to write 90% of our code. This is because it was better to write JavaScript and
Typescript with. The Ambita-support features/user stories were written in VSC. A lot of
customizations of the VSC was done, this was possible by downloading different plugins like:
auto-bracket close, color highlighting for syntax, riot plugin, typescript plugin and more. We
could customize it to our liking, making our work environment optimized for us. The project
was run from the terminal and all git functions here too. Since we used a Git bash terminal

instead of cmd.

4.3.7 Slack

Slack was mainly used for communicating with each other. There were text-channels
dedicated for different things. Sometimes you would sit far away from the team, so one of
the best ways to reach the team, was to write in a slack channel. When we had to work from

home, this was our main way of communication with the development team.

41

4.3.8 Google Docs

Google docs was used to write log, reports and to-do note lists. It was mostly used for writing

our daily documentation.

4.3.9 Daily documentation

Every day for four months Google docs were used to log what we did. This was done in a way
that we would not have to take screenshots later, and keywords to help us write the report
later. The daily documentation was structured in a way that helps us navigate through it. It

had the date and month of when a certain feature was worked on.

The daily log was like a daily scrum for us. A little script to what to report the day after. we
would always be prepared to daily scrum. If we made progress or not, we would log that, so

that we know what we struggled with the day before, so we could solve it the next day.

4.4 Implementation

4.4.1 Implementation requirements

Our group is required to follow Ambita’s design structure during the implementation process.
This includes the code structure and folder structure. We are also required to use their tools
to coordinate and get updates on the project. We had to use their current technology,

programming language and communication tools during implementation.

4.4.2 Design structure

The new support application has a very structured design, and we are required to follow it.
The folders are structured in a way that is very easy to navigate through and is named
properly. Each folder is named after its functionality or feature and holds all the core files of

the feature.

The files under each folder are named properly after their feature. It follows the Model View
Controller framework (MVC) and has a code structure designed for Riot.js implementation.

Ambita uses TypeScript for the controller.ts and index.ts file. The HTML file is named view.tag

42

because it uses Riot.js tag syntax. The styling is named styles.scss since we will be using SCSS
for styling each class.

Infoland folder structure (Only shows Project Phoenix):

details

Figure 26 Picture of our project folder

43

Figure 27 Picture of files in each folder

We will be following this folder structure during the development of Project Phoenix. Each
feature will also be named after their respective user story as shown on the figure above. The

code structure will also be followed during the projects implementation.

The code structure is very close to a HTML-file but does not have a head or a body tag that
encloses its respective contents. In our case, the entire code structure will be enclosed with a
tag named after its user story. The content and functionality of the feature are written inside
the tag. The script is enclosed in its own script tag similar to how we enclose scripts inside a

HTML code.

Since the support application has a massive structure, the classes inside the div tag will have
to be named accurately. The scripts are not directly written inside view.tag, but instead inside
the controller.ts. We will have to import controller.ts file as well to work together with the

view.tag, this goes for the styles.scss as well.

44

view.tag

{}

“wizard-content-identity”>

ambita-support-modal_ bloc
"bold spac Systemnavn
wizard-content-identity containe
systemBelongings™ cl width
{ systemBelonging in systemBelongings }"
[systemBelonging.code }"
{ systemBelonging.code product.systemBelonging.code }">
systemBelonging.description } ({ systemBelonging.code })

"bold space

ext" ard-content-identity input” placehold { product.supplier.code

“ambita-support-modal_ bloc|
wizard-content-identity new-product”>
bold space">Nytt produkt</1 1
wizard-content-identity_ notice
Det er mulig & bruke et annet produkt som et utgangspunkt for dette nye produktet.
Sek det opp og hent den inn som forslag

>Produktnummer<
ontent-identity_ input™>
rd-content-identity recommend-button”>Hent forsla

class="ambita-support-modal__ blocl

Figure 28 View.tag code structure

styles.scss .

import ° L. fstylesfglobals” ;

tiwv

support-modal {
rerlay
FfFixed;

color-black,
$z-index-madal;
WN-Yy: auto;

& contain
width 1

margin: auto
background-color: Ewhite;

Figure 29 styles.scss code structure

45

Figure 29 shows an example of how the nesting structure should look. It imports from the
global styles in their support application. Most of the files imports from functionalities from

other files, this is especially true for the controller.ts file.

The styles.scss file is very similar to a regular CSS-file. It uses almost the identical syntax but is
more powerful and has a lot more features. We will structure our styles.scss files in the same

way it has been structured in the other support application features.

The controller.ts is written in TypeScript and shares a structure close to a Java or C-language.
The first lines import the dependencies. This often includes the main API types, Tags and also
Riot Events to link with the view.tag. In figure 30 from line 1-10 are the imports for the
controllers. From line 12 to 21 we have the interface, which basically adds all the required
variable and tags that can be called in the view.tag.

Controller.ts code structure (ldentity wizard example):

controller.ts X

{ RiotEvent } from ‘ambita-components-core’;

{ TypesApi } from '~/typingsfapi/productCatalog/logistics/Types’;

{ SystemBelongingApi } from '~/typings/api/productCatalog/logistics/SystemBelonging”;
{ Tags } from "~/typings/app/Tags";

{ Products } from '~/typings/app/Products’;

productsStore from ‘~/stores/products’;

{ getProductTypelist } from '~/dataServices/types’;

{ getPriceTypelList } f vices/types’;

{ getTradeTypelList } f vices/types”;

{ getSystemBelongingList } from '~/dataServices/systemBelongings';

export interf WizardContentIdentityTag e ds Tags.TagInterface {
checkBoxStatus: HTMLInputElement;
priceTypes: TypesApi.PriceType;
product: Products.Product;
productTypes: TypesApi.ProductType;
systemBelongings: SystemBelongingApi.SystemBelonging;
tradeTypes: TypesApi.TradeType;
h eT! radeType: TypesApi.TradeType): boolean;
0 ange (event: RiotEvent): void;

.then(productTypes => {
s = productTypes.productTypelist;

y then(priceTypes => {
ag.priceTypes = priceTypes.priceTypelist;
tag.u e

I3

Figure 30 controllers.ts code structure

46

Our group will be implementing all the controller.ts, index.ts, view.tag and styles.scss to
match the code structure similar to the examples shown above. This will also help us

immensely by having a clean structure that is easy to navigate through.

4.4.3 Used technologies

Team Infoland utilizes multiple technologies and tools for their projects. For the
implementation of Project Phoenix, we will be using the computer they have provided for us.
This is because we require Virtual Private Network (VPN) access, as well as Secure Shell (SSH)

connection to be able to access their servers.

Here are the current specs for the PC provided to us:

View basic information about your computer

Windows edition
Windows 10 Home
© 2019 Microsoft Corporation. All rights reserved.

System
Manufacturer: ASUSTek Computer Inc.
Processon AMD Ryzen 5 3550H with Radeon Vega Mobile G 2,10 GHz
Installed memery (RAM): 16,0 GB (15.8 GB usable)
Systern type: B4-bit Operating Systern, x64-based processor
Pen and Touch: Mo Pen or Touch Input is available for this Display

Figure 31 Laptop spec
We will also be utilizing the Atlassian user they have provided us with. This allows us to

coordinate, communicate and update each party during project development.

4.4.4 Used programming languages
The used programming languages during the implementation process were:
- Java
- Riot.js
- TypeScript
- JavaScript

- Abit of HTML & SCSS (Tags and class structure)

47

5 Results

5.1 Functionality & Design

5.1.1 The Modal

The modal was the very first thing we implemented. This was to help us understand the main
structure and ropes of how to work with their support application. We managed to create a
button that opens the modal, and also completely removed all the features inside the
existing “edit product” button. The modal is divided into three containers. These containers
each have their own functionality being navigation, product details (description) and the

schema (contents).

The First container is the description, which gives a small description of the product. The
second container is the navigation menu, allowing the users to navigate through the wizard.
The third container is the schema, which includes the content and main feature for editing a

product.

The Modal feature:

Endre produkt

TITLE
DESCRIPTION():; SCHEMA();

NAVIGATION();

Figure 32 Modal feature

48

5.1.2 The Wizard

The wizard is a setup process of the product. We managed to implement a navigation bar
that switches between the contents, allowing the user to navigate through the modal. The
top-left container gives a small description of the selected product. It also gives the user a

quick summary of the name, price and status of the viewed product.

The navigation bar uses the “Font Awesome” icons and will get highlighted when the user
hovers over the selected feature. We tried implementing the navigation bar to be as close to

the request as possible.

The schema container switches its content depending on the selected navigation menu. This
was done using Riot Events. The default page is the identity wizard, which allows the user to
edit the identity information of a product. We have also implemented the “Lagre, neste steg”

button as mentioned in the user stories.

The Wizard feature:

Endre produkt

E

Web Infoland (Wiy
Tegninger som viser bygningen slik den ble
godkient. Hentes fra byggesaksarkiv. Ja

Leveranderid K9993INFOLAND

Nytt produkt
Det er muli 4 bruke et annet produkt som et utgangspunkt for dette nye produkiet. Sek det opp og hent den inn som forsiag

Produktkode: wwssssceoo

Leverander: K2s20INFOLAND

Kostpris: . Produktnummer m
Pris NET: -

Pris VAT:

Status: Produktnummer WI39990900

Godkjente bygningstegninger

|

Ekstern referanse
[’ BESKRIVELSE
Produkttype Vanlig produic
W LEVERING
Produktpristype Fast
& RELASJONER
Aktuelle bransjer [Eiendom og Takst
"™ BESTILLING Bank og Finans

B4 Bygg og Anlegg
&t SAKSBEHANDLER [Offentlig forvaltning

[Andre
@ FRIS
[H PARAMETERE

& TILGANG

@ GODKJENN

Figure 33 The identity feature

49

5.2 Frontend Development

5.2.1 The modal

The modal was the very first feature to be implemented. It allowed us to get familiar with the

support application folder structure. This also let us experience how a decently large

company coordinate using version control.

The modal wizard view.tag:

view.tag

edit-product™>
ita-support-modal_ overlay™»
‘ambita-support-modal__ wizard-container”>»

"ambita-support-modal__content”>
mbita-support-medal__ inner-container”>»
"ambita-support-modal_ details":

s product="{ product }"/>

upport-modal__ navbar™:>
tch-content="{ switchContent }"/>

. ./wizard/navbar”;
import "../fwizard/content’;
import '../wizard/details’
import { init } from °./controller’;

t{this);

Figure 34 view.tag of edit-products modal

The view.tag file is a simple structure written in Riot.js. It uses the tag-syntax, where each tag

has its own contents of codes written in it. This allows us to display contents by just simply

adding an enclosed tags on the view.tag file.

The navigation bar, wizard content and product details were also imported on the same

view.tag file as seen on the image above.

50

The modal does not import any styles.scss files. Instead it uses the global styles.scss that was
already made inside the support application global files. This was done so that we did not
have to write a duplicate code on the other user stories. It was also advised and instructed to

us by the Infoland team to not write duplicated code.
The modal wizard styles.scss:

.ambita-support-modal {
overlay {
position: fixed;
top:
left:
width:
height: 1 ;
background-color: transparentize($color-black, €
z-index: $z-index-modal;
overflow-y: auto;

&:focus {
outline: none;

& block {
padding-top: 1
padding-bottom: 1

& container {
width:
margin: 5
background-color: BMwhite;

& header {

Figure 35 The modal scss
The image above shows how we stylized the modal using scss. It does not show the entire

code as it is too long and is also used by the other support application features.

5.2.2 The wizard

The wizard is heavily reliant on the Riot Events to function. Each user story we implemented
are basically features of their own and is a part of the wizard. To create a setup wizard, we

had to somehow switch between these contents when clicking on a navigation menu.

51

To switch between contents, we created a Riot Event that connects each Riot.js tag on an
interface controller. It displays and swaps out the current default content with the chosen
content. This is done through the navigation menu and is imported through the view.tag

under the scripts tag.

The wizard view.tag:

viewtag X

lass="wizard-content">»
ard-content_container” if="{ opts.activeTab === 'identity' }"»

.activeTab === 'description’ }"»

izard-content__container” if=" .activeTab === 'delivery' }"»

ent-deliy

izard-content__container” if=" .activeTab === 'relations’ }"»

.activeTab === 'order' }"»

.activeTab === 'case-worker' }"»

izard-content container” if=" .activeTab === 'price’ }"»

nt-price/>

.activeTab === 'parameter’ }">

Figure 36 styles.scss of navigation bar in modal

52

The styles for the wizard contain multiple container, each having similar style. The wizard can
be divided into three sections. The first one displays the details of the product, the second
one displays the navigation menu, and the third displays the selected content (Identity wizard

by default).

The wizard styles.scss:

izard-container {
th: 1
margin:
background-color: Ewhite;

& inner-container {

width: 1180
height:

& details {
position: static;
float: left;
margin: aut
padding:
width: 2
height ;
border: 8 solid Mgray;
outline: Egray solid thin;
background-color: BMwhite;
overflow: hidden;

& navbar {
position: static;
float: left;
margin
width:
height: 4

border solid Egray;
outline: Mgray solid thin;
background-color: Ewhite;
overflow: hidden;

Figure 37 styles.scss of the wizard

The image above shows how we implemented the style for the wizard frame. They share
almost an identical style and layout but has different proportions to contain the features that
is to be implemented in it. This is a code snippet of styles.scss of the wizard showing the
structure of the code. It does cover the main concept about how we went to implement the

style.

53

5.2.3 Navigation bar

The navigation bar is a simple container that contains customized buttons. Each button
changes the content on the wizard. It was a relatively simple implementation and takes
advantage of using the Font Awesome icons.

The navigation bar:

[BESKRIVELSE

B LEVERING

& RELASJONER

™ BESTILLING

as SAKSBEHANDLER
@ PRIS

B PARAMETERE

& TILGANG

i GODKJENN

Figure 38 Navigation bar

The image above shows a visual representation of the navigation bar we implemented. We
tried to make it as close to the requested user story image as possible. The buttons get

highlighted when hovered on as requested by the product owner.
The view.tag code uses the wizards Riot Events to call in its functions when clicking on each
buttons. The opts.switchContent changes the content shown on the wizard content

container depending on the button id.

54

The navigation bar view.tag

view.tag X

ar>
id="identity"” i "{ opts.switchContent }” cl ambita-support-modal_ wizard-button”™:
-card"></i> ID

description” «="{ opts.switchContent }" c "ambita-support-modal wizard-button”>
fas fa-edit /1> BESKRIVELSE

opts.switchContent }" cl ambita-support-modal_ wizard-button”:>
LEVERING

relations™ { opts.switchContent }" c "ambita-support-modal__wizard-button”>

"fas fa-link i> RELASJONER

order” { opts.switchContent }” 3 ‘ambita-support-modal_ wizard-button”>
fas fa-shopping-cart > BESTILLING

Figure 39 view.tag of the navigation bar

The navigation bar styles.scss

& navbar {
position: static;
float: left;
margin:

width:

height:

border: 8 solid Mgray;
outline: M gray solid thin;
background-color: Bwhite;
overflow: hidden;

Figure 40 styles.scss of the navigation bar

5.2.4 The identity

The identity wizard was the third feature to be implemented. It allowed us to get used to
their code structure and how everything is connected and imported. This wizard contains

some input fields, dropdown menu and checkboxes.

55

Endre produkt

Godkjente bygningstegninger

Tegninger som viser bygningen slik den ble
godkjent. Hentes fra byggesaksarkiv. Ja!

Produktkode: — Wis2280800
Leverandsr: KEEaEINFOLAND
Kostpris: 16 .-

Pris NET: 180 -

Pris VAT:

Status:

[# BESKRIVELSE

W LEVERING

& RELASJONER

™ BESTILLING

A% SAKSBEHANDLER
@ PRIS

[E PARAMETERE

& TILGANG

'@ GODKJENN

ID

Systemnavn

Leveranderid

Nytt produkt

Web Infoland (W1)

KI999INFOLAND

Det er mulig a bruke et annet produkt som et uigangspunki for detie nye produkiet. Sek det opp og hent den inn som forslag

Produktnummer

Produktnummer

Produktnavn

Ekstern referanse

Produkttype

Produktpristype

Aktuelle bransjer

Hent forslag

WI199990900

Godkjente bygningstegninger

Vanlig produkt
Fast

[Eiendom og Takst
Bank og Finans

4 Bygg og Anlegg

[Offentlig forvaltning

[Andre

Lagre, neste steg

Figure 41 Final result of the wizard feature

Figure 41 shows the final result of the identity wizard. Some of the fields displays the selected

products general variables. This is done through the backend part of the development and

connects to a database that receives the products general information.

Figure 42 shows the final code for the identity wizard we implemented. It has a simple code

structure similar to that of an HTML-file except that these are enclosed inside the wizard-

content-identity tag. Most of divs classes are imported from the global styles.scss to avoid

duplication of code following the DRY principle. DRY principle or Don’t repeat yourself is a

basic software development principle aimed at reducing repetition of information (Baghel,

2020). Keep in mind that the image does not show the entire code structure as it was very

long due to the amount of dropdown menus and input fields.

56

The identity wizard view.tag:

'wizard-content-identity™>

"ambita-support-modal block”
bold space”>»Systemnavn 1

"wizard-content-identity_ container™

"systemBelongings™ cl width">

"{ rvsfeml?elcnglna in systemBelongings }”
stemBelonging.code }
"{ systemBelonging. codu = product.systemBelonging.code }">
| systemBelonglng.descrlptlon } ({ systemBelonging.code })

izard-content- dentlfv __input™ placeholder="{ product.supplier.code }">

"ambita-support-modal block”
"wizard-content-identity new-product™:
'bold space”>Nytt produkt
wizard-content-identity notice™
Det er mulig & bruke et annet produkt som et utgangspunkt for dette nye produktet.
Spk det opp og hent den inn som forslag

space” >Produktnummer</1 1>
" cla wizard-content-identity input™>
"wizard-content-identity_ recommend-button”>Hent forslag</but

class="ambita-support-modal block">

Figure 42 Final code for the identity

The styles.scss for the identity wizard contained mostly of unique classes and id. They
exclusively belong to the identity class and is directly imported inside the view.tag under the
scripts section. The code focuses on customizing the identity wizards input fields and button.
There are two different buttons on the identity wizard. One uses the global styles, while the

other one uses the unique style written inside the identity wizard styles.scss.

Figure 43 shows how the classes for the identity wizard was written. Even though it is written

in SCSS, it looks identical to a CSS-file. This was our first take on how to use SCSS and its code

structure.

57

The identity wizard styles.scss

.wizard-content-identity {
& contair |

width:

widt
box-sizin border-box;

& new-product {
background-color: WMieee;
padding-bottom:

& notice {

font-s
clear: both;

& recommend-button {
background-color: M#2196f3;
color: Ewhite;
padding: :
font-s -
border-color: [black;
border-width: thin;
margin-left: 5

Figure 43 styles.scss of the identity feature

5.2.5 The description

The description wizard was simple to implement. It consists of a short description field and a
long description field. This wizard is supposed to let the user write a short or a long

description for the product. It is supposed to be simple yet powerful enough to be an editor.

Figure 44 an image of the actual result of the description tab. Some things that are worth to
mention is that this is a test/demo product. Hence the weird descriptions, the text formatting
bar is not the same as the one on the requirement, because of the code was not in this

project but rather a different project. Therefore, the text formatting tool looked like that.

58

The description wizard:

Endre produkt

ﬁ Beskrivelse

Godkjente bygningstegninger Kort beskrivelse

Tegninger som viser bygningen sk den ble
godkjent. Hentes fra byggesaksarkiv. Ja

Normal : B I
Produktkode: [Tegninger som viser bygningen slik den ble godkjent. Hentes fra byggesaksarkiv. Jal
Leverander: 8998 INFOLAND
Kostpris: 16 .-

Pris NET: 180 -

Pris VAT:

Status: Lang beskrivelse

D Normal B I

Lang lang lkasjdlksjd Iskajd Iksajd Isakjd Iskajd Iskajd Iskajd Iskajd lksaj dlksaj dlksaj dlksaj dlksaj diksaj dlksaj dlksaj disaj disajdlksaj
dlksaj dlsa Idksaj d uwveuvuewvwevw oneyetyenewvewvuvewuwe ughewebubewem ossas
B LEVERING
& RELASJONER
™ BESTILLING
&% SAKSBEHANDLER
¥ PRIS
E PARAMETERE

& TILGANG

@ GODKJENN

Figure 44 Final result of the description feature

The description wizard view.tag:

zard-content-d

support-modal_ b
Kort beskrivelse
d-content-description_ short- iption” t ipti { product.description]

support-modal_ b
Lang beskrivelse
d ongDescription™>{ product.long_description }

".fcontroller’;

Figure 45 Final code for the description feature

59

The actual code in the view.tag looked like the figure above. All that was done was referring
to the short and longDescription which is in the controller. The content of the div class is the

products description called with { product.long_description } and { product.description }.

.wizard-content-description {
& short-description {

re
e

he

size: none;
ight: 12epx;

& long-description {
resize: none;
height: 25

Figure 46 styles.scss for the description feature

The only scss that was written is shown in the figure above. Width was already predefined in

the other project and was just imported over on the view.tag file.

5.2.6 The delivery

The delivery wizard was a relatively simple task. It has multiple radio and checkboxes for the
user to set the proper delivery settings. The user story displayed a horizontal type of
implementation for these radio boxes, but we decided that a vertical one would be much

cleaner and easier to use. The product owner also approved this.
Figure 47 shows how the delivery wizard turned out. There is no logic behind this figure, the

only thing that had to be made was the input boxes. So, the user can select the different

values.

60

Endre produkt

]
Godkjente bygningstegninger

Tegningsr som viser bygningen slik den ble
godkjent Hentes fra byggesaksarkiv. Ja

Produktkode: wieagaoeon
Leverander: KAZAZINFOLAND
Kostpris:

Pris NET:

Pris VAT

Status:

®mID

[# BESKRIVELSE
& RELASJONER

™ BESTILLING

2% SAKSBEHANDLER
@ FPRIS
PARAMETERE

& TILGANG

@1 GODKJENN

Levering

Kienstype Bestilling
Oppslag
Sek
Utskrift

Tilgjengelig via EDR
Infoland
NEW
API
n/a

Leveringsfrist
Rangering
Medium Bildefil

Leveringgsform Elektronisk
Post

Tilgiengelighet For alle
For ingen
Kun for avtalekunder
Kun for kontantkunder

Lagre, neste steg

Figure 47 Final result of the delivery feature

ambita-support-modal__bloc

bold space”>Kjepstype</1
‘wizard-content-delivery_container
"ambita-support-modal__radio-container”> Bestilling
="radio” name="purchaseType">»
"ambita-support-modal__radio-checkmark

="ambita-support-modal__radio-container™> Oppslag
"radio™ na "purchaseType" >
"ambita-support-modal radio-checkmark™:

"ambita-support-modal radio-container”>» Spk
"radio” name="purchaseType">»
ambita-support-modal__radio-checkmark”

="ambita-support-modal__radic-container”> Utskrift
"purchaseType" >
“ambita-support-modal__radio-checkmark

Figure 48 Final code for the delivery feature

61

Because of slow pull request and no APl-endpoints available. They were temporarily

hardcoded in the code. If it were not hard coded it would have looked something like this.

Taking “Kjgpstype” as an example:

ontainer"”

type="radio” wvalue="purchaseType.code"

{ purchaseType.name }

class="ambita-support-mo

io-checkmark”

Figure 49 Example code 1

What it does is making a loop which then iterates through the object purchaseTypes array,

and then put every purchaseType.name as a radio button value.

The delivery wizard styles.scss:

.wizard-content-delivery {
& container {

width: 258px;

overftlow: hidden;

Figure 50 styles.scss of the delivery

5.2.7 The relations
This task was surprisingly straightforward but also hard. As shown in the user story it had to
have sides, where you can move a product relation back and forth. Five different containers

must be made to make this work. Some of the containers had overflow problems, so we fixed

that by limiting which container could have visible overflow.

62

The relations wizard:

Endre produkt

E Relasjoner

Meglerpakke WI99990033 er en pakke. Her spesifiserer du hvilke produkter som skal tilknyttes

Pakken inneholder.

Sek... Valgt (6) Fjern Alle
Produktkode: — Wigsea0022 Velg alle y 00
Leverander: HEBOBINFOLAND Grunnkart X
Kostpris: 1200 .- VI99 40
Pris NET: —— Arkivdokument VIg 00 X
Godkjente bygningstegninger
Pris VAT: 2083 - 19999171
Status: Ativt Basiskart V 0
Midlertidig brukstillaielse og ferdigattest X
BID Basiskart som vektordata VIg 0
Tilknytning til offentlig vann og kloakk - skiemalesning
VI99 0
(%' BESKRIVELSE Basiskart som vektordata utvalg (Bergen test) V199 00
Kommunale avgifter og eiendomsskatt X
B LEVERING ! 02
Basiskart som vekiordata utvalg (localhost test) V199
& RELASJONER Planutsnitt med bestemmelser X
VIg 00
W BESTILLING Basiskart som vektordata utvalg (Oslo test)
&% SAKSBEHANDLER - .
- Bestille kart
$PRIS .
B PARAMETERE
& TILGANG

@' GODKJENN

Figure 51 Final result of the relations feature

rd-content-relations_
: wizard-content-relations_ search-bar"

rd-content-relations left-
zard-content- __check-:

ambita-support-modal__checkbox-container”> Velg alle
checkbox” "checkAll” 1 "I checkAll }"»
ambita-support-modal__checkbox-checkmark” :

rd-content-relations col-lef
zard-content-relations_ products
"{ availableProducts }">

{ this }" lin ="#/products/"
checkbox wizard-content-relations_ item” c { isChecked() { add }" r
ambita-support-modal checkbox-1ist-checkmark”><

Figure 52 Final code of the relations feature part 1

63

zard-content-relations_ right-bar”>

="wizard-content-relations__done” ref="counter” e="ogverflow: none”>Valgt ({ counter()
"wizard-content-relations__remove-all 1 removeAll }"> Fjern Alles >

d-content-relations_ col-right">
‘wizard-content-relations_ products™>
. ctedProducts }">

checkBoxes” onclick="{ remove }" name="checkbox

‘ambita-support-modal__ button-next">Lagre, neste step:

Figure 53 Final code of the relations feature part 2

The code snippets in Figure 52 and 53 show what the relations user story is made of. As
mentioned earlier different containers had to be made to make this work. So how did we get
the products? We used linked-code to make this work by calling an element link-
prefix="#/products/” this was not made by us and already existed. Got the information from
Scrum master that we could do it like that. Each of these containers are listing different
products. One is listing availableProducts and the other one lists selectedProduct. These are
explained more in detail what they are in chapter 5.3.6

The code snippets below is the scss that was written to make the relations user story.

-wizard-content-relations { & check-all {
[list-style-type: none;
paddin
top: margin:
width: 4
height: 1i {
outline: EHgray solid thin;
background-color: Ewhite;
verflow: auto; 1

border-bot
padding: 1¢

& col-right {

position: absolute; i
width: list-style-type:

& products {

height padding: ©

top: 1 margin:

left: 40

outline: Egray solid thin; 1i {
ckground-color: Ewhite; padding: 1
verflow: auto;

(.header) {
label { und-color: Mieee;
display]
height: ;
padding-left:

& remove {

Figure 54 styles.scss of the relations part 1 Figure 55 styles.scss of the relations part 2

64

___remove-all

position:

fonmt-size: 14
color: Ergh(
display: inline-bl

__remove-all:hover {
text-decoration: underline;

. search-bar 1
width: 106%;
height: 188%;
font-size: 12px;
padding: @ 18px;
border: 8;

Figure 56 styles.scss of the relations part 3

5.2.8 The ordering

The ordering wizard was implemented in an identical way as the identity wizard. It has radio
boxes, a checkbox and a dropdown menu that allow the user to choose between schemas. It
also strays away from the original user story design, and instead uses the vertical style for the

radio boxes instead of a horizontal layout.

The ordering tab is not properly finished, since no APl-endpoints were available. Due to slow
pull request approval the APIs were made but never implemented to the front end. Since the
approval and merging came later. Hence the same results as the delivery tab. The radio
buttons are vertically instead of horizontally to save space. Then again there is no special

logic here, only a bunch of different input types and a select tag.

65

The ordering wizard:

Endre produkt

E Bestilling

Godkjente bygningstegninger Pakrevet informasjon ved kjsp av produktet

Tegninger som viser bygningen slik den ble
odkjent. Hentes fra byggesaksarkiv. Jal
geckl vag Matrikkel

Borett
Forretningsfarer
Geografisk utsnitt
Dokument

Produktkode: WIgE2g0E00

Leverander: KEGRRINFOLAND
Kostpris: 116 - K
Province
Pris NET: 160 -
Pris VAT: 200 -
Benytt standardskjema for pakrevet informasjon
Status: Aiivt

Skjema

2=]1o] Default matrikkel

[BESKRIVELSE
W LEVERING

& RELASJONER
A% SAKSBEHANDLER
@ PRIS

B PARAMETERE

& TILGANG

@ GODKJENN

Figure 57 Final result of the ordering wizard

The ordering wizard view.tag:

box-container”> Benytt standardskjema for pikrevet informasjon

cmark™ >

support-modal__ bloc
d" >Skjem
wizard-content-order_ container
>
efault matrikke

ambita-support-modal__ button-next”>Lagre, neste ste|

Figure 58 Final code of the delivery feature
Due to no APl available, the values were hardcoded. If it were not hardcoded it would have

looked something like the code snippet in figure 59. Using Skjema as an example:

66

{ orders.name }

Figure 59 Example code 2

It does the same thing as the purchaseType. It iterates through orderAvailability which is an
array then creates options in the select tag based on the orders.name

The ordering styles.scss:

.wizard-content-order {
& container
width: 258
rflow:

Figure 60 styles.scss of the delivery
5.2.9 The executives
The executives wizard:

Endre produkt

ﬁ Saksbehandler

Godkjente bygningstegninger Merk! Endriger her pairker ikke allerede eksisterende ordre, kun ordre opprettet etter endringen.

Tegninger som viser bygningen slik den ble
godkjent Henles fra Ja

Sek... Valgt (0)

Produktkode: wieeeasa0o Velg alle

Leverandgr: KeeseINFGLAND
Kostpris: - test
Pris NET:
Pris VAT:

Status:

®EiD

[# BESKRIVELSE
W LEVERING

& RELASJONER
™ BESTILLING

A&l SAKSBEHANDLER

@ PRIS

B PARAMETERE

& TILGANG

2 GODKJENN

Figure 61 Final result of the executives feautre

This looks very much like the relations. That is because the only difference is some minor

changes. Caseworkers were listed instead of listing products. The reason for this feature

67

being partially finished were because of we did not know which API to use to get these
executives. There was a mutual decision to just focus on the relations feature. Then finish this

feature later.

The executive wizard view.tag:

class="wizard-content-case-worker__left-bar-search™>»
"wizard-content-case-worker__search-bar™ placeholder="5Sgk..."

"wizard-content-case-worker_ left-bar">
izard-content-case-worker__check-all™>

"ambita-support-modal__checkbox-container”> Velg alle
eckbox” ref="checkAll" ¢ "{ checkAll }
ambita-support-modal__checkbox-checkmark™></

rd-content-case-worker__col-left">
"wizard-content-case-worker_ products”>

modal__ checkbox-list-container”> test
vizard-content-case-worker__ite "checkBoxes™ ¢
ambita-support-modal__ checkbox-list-checkmark”><

Figure 62 Final code of the executive feautre

A checkAll function was made, this was used to check all the executives. The checkAll
function was called in view.tag to use it on click. More about how the different functions
were made, can be read in chapter 5.3.6. The executives styles.scss file is very similar to that
of the relations wizard. It has two container with multiple nested containers inside for its

content.

5.2.10 The price

The price wizard could not be implemented as the user story for this was given to us
relatively late of the semester. Development process was also further delayed by the

coronavirus pandemic.

68

5.2.11 The parameters

The parameters wizard had already been implemented. The product owner and scrum
master requested that we just move it over to the new modal. The design stayed original,
and it still had the duplicate functionality as before. It allows the user to add, edit, delete and

save a parameter, as well as add or remove tags.

Endre produkt

E Parametere

Godkjente bygningstegninger e Verdi + Nytt parameter

Tegninger som wiser bygningen sik den bie
godkjent. Hentes fra byggesaksarkiv. Jal AxaptaAccount 2002 Wset | @ Lage
AxaptaProductGroup 1221 W Skt | @ Lagre
Produktkode: wigese0sco

Leverandsr: Tags

Kostpris: e
Pris NET: 100
Pris VAT: 200.-

Status:

mID

[# BESKRIVELSE

W LEVERING

& RELASJONER

™ BESTILLING

23 SAKSBEHANDLER
@ PRIS

& TILGANG

@ GODKJENN

Figure 63 Final result of the parameters feature

2 "wizard-content-parameter”>
arametere</

ambita-support-modal_ block™>

ambita-support-modal block™>
bold” »Tags</p>
'wizard-content-parameter_ json-editor-container”™ ref="jsonEditor”></div>

"ambita-support-modal_ button-next“>Lagre, neste steg</button:

import '../../..feditParameters/editor’;
import "./styles”;
import { init } from './controller’;

it(this);

Figure 64 Final code of the parameters feature

69

The parameters styles.scss

.wizard-content-parameter {
table |
width: 1¢

thead {
th:last-child -
Il i dt h . F

thody {
input {
width: ¢

& json-editor-container {
.ambita-json-editor_ header,
.ambita-json-editor control-label {

display: none;

Figure 65 styles.scss of the parameter

5.2.12 The authorizations

The authorizations wizard could not be implemented as the user story for this was given to us
relatively late of the semester. Development process was also further delayed by the

coronavirus pandemic.

5.2.13 The approval
The approval wizard could not be implemented as the user story for this was given to us
relatively late of the semester. Development process was also further delayed by the

coronavirus pandemic.

70

5.3 Backend Development

5.3.1 API

Application programming interface, also known as API, is a way to let products and services
communicate with each other without having to know how they are implemented.
(Redhat.com, 2020) An APl is the messenger that takes requests, and tells the system what to
get. Then the messenger will wait for a response from the server, which then you will
ultimately get. Think of an APl as a waitress in a restaurant. You are presented a menu full of
items, and the kitchen is the provider who will fulfill your order. But how do you get what you
want? That is where the APl comes in. The APl in this example is the waitress. The waitress is
the missing link in this communication. The waitress will bring your order (request) to the
kitchen then deliver the food (response) to you. (mulesoft.com, 2020) From here on

Application programming interface will be referred as API.

The messenger

Request Provider (The system)
(API) q [¥)

End user Fequest

Response Response

Figure 66 Figure of how APl works

During our time working with Project Phoenix, there was some APIs that had to be created.
These APIs were not created because the company didn’t have any use for them until now.
There was no API for listing: product types, price types, delivery types and others which will
be mentioned later in this chapter. There was a total of ten APl endpoints that had to be
created, they were created like the others, following the similar code structure and style,
with an exception for one. Which will be mentioned later.

When making APl endpoints, eight classes had to be made for each APl endpoints. An

example of how the API for product types was made:

71

The classes that had to be made was:
Api/ProductTypes.java
Api/ProductType.java
LogisticsProductTypeMapper.java
ProductTypeService.java
LogisticsProductTypeController.java
Models/ProductType.java

Two classes for testing:
LogisticsProductTypeServiceTest.java
LogisticsProductTypeControllerTest.java
Two classes that had to be modified:
/mapping/Metamapper.java

Logistics.routes

In this class the only thing that was written was the types of the data which you could find in
the table (See figure 68). In figure 67 there is a clear representation of what the class should
contain. These are the fields we want to expose from the API.

Api/ProductType.java:

Figure 67 Figure of /api/ProductType.java

72

v & I':iI'I::|:|IJ|:‘|:__-:'.-I-:;E
5% id
*3 narme

H updated
BE code

Figure 68 Figure of product_type database table

Api/ProductTypes.java:

com.ambita.productcatalog.:

F roductTypes

Figure 69 api/ProductTypes.java

Unlike the other API class, this class contains the list where we store the exposed fields of the
API. So that the API user does not get more information than the user should. As shown in
the figure 69 there is a swagger notation “@ApiModel” and inside the brackets there is a
string: “list of product types”. The swagger notation “@ApiModel” provides the programmer
the choice of describing the class (docs.swagger.io, 2015). Taking this description of the

swagger notation to account, the class was described as “list of product types”.

73

The mapper classes are used to expose only the fields we want those who use the APIs to
see. In figure 69 displays a function called mapToProductTypes is creating an object of type
ProductTypes by using the api class: api/ProductTypes.java, and then use the list
productTypelist as shown in figure 69. You can see that in figure 68 there is a list called
productTypelist. It uses stream to convey elements from a source like an array, a data
structure or an I/O channel. (docs.oracle.com, 2020) Then add it to the collection using the

Class “Collectors” and its built-in method name “tolList”.

LogisticsProductTypeMapper.java
CtTypeMapper {

MetaMapper

LogisticsProductTypeMapper(MetaMapper metaMapper) {

= meta

tType productType) {

productTy

apiProductTypes

Figure 70 LogisticsProductTypeMapper.java

74

ProductTypeService.java:

@Inject

ypeMapper)| {

uctTypeName) {

+ productType)

.mapToProductType(productType)

Figure 71 ProductTypeService.java

The service class is the class that is organizing everything that is going to be done. This
includes input validation, update of the database and mapping to the correct response. It
updates the database by calling the functions in model class, see figure 73. This will be
covered later. The Service class also maps to the correct response by calling the functions in
the mapper class. As shown in figure 71 both the functions call the method
mapToProductTypes from the class LogisticsProductTypeMapper (see figure 70). The bottom
function is a function that will fetch a specific APl response. It first calls a method from the
models/ProductType.java class called findByName. (see figure 73) What this function
getProductType does is that if the specific response does not exist, then it will be return an
error message which is declared as TYPE_NOT_FOUND_MESSAGE including the name of the
specific response the user tried to get. Then it will return the mapping results if there are any.

If there is none, then it will return as empty.

75

LogisticsProductTypeController.java

ProductTypeService

enticationService, ProductTypeService productTy

Figure 72 LogisticsProductTypeController.java

The function of the controller class is to receive HTTP call and then forward it to the services.
It also functions as access controls to the APIs. The access control part is declared in the
constructor of the class. Super(authenticationService) means that it inherits all the properties
and behavior from the parent class. Inheritance in Java is a mechanism in which one object
acquires all the properties and behaviors of a parent object. The idea behind inheritance is
that you can create new classes built upon existing classes. (javatpoint.com, 2020)

HTTP calls are handled with the @ApiOperation. Inside the @ApiOperation scope there is an
element called httpMethod. What this does is read what kind of ‘method’ it is. It will then
return the response type which is ProductTypes.class (the api class). There are seven
different acceptable values for HTTP ‘method’. These are:

GET

HEAD

POST

- PUT

76

- DELETE

- OPTIONS

- PATCH

Table 1 will explain what the different HTTP method does.

httpMethod|Function
Requests that uses GET retrieves data.
GET It requests a representation of the specified resource.
The same as GET method, but instead of returning everything,
HEAD it will return what the GET method returns but without its response body
POST method replaces the current representation of a given resource,
POST which will cause a change in state on the server
PUT replaces all the current representations of the target value with the
PUT request payload.
DELETE DELETE method deletes the specified resource
The OPTIONS method is used to describe the communications options for
OPTIONS the target resource
PATCH PATCH Is used to apply partial modifications to a resource

Table 1 Different HTTP methods

Table 1 was retrieved from (developer.mozilla, 2020).

Models/ProductType.java:

@Required String

Lumn

LocalDateTime

Figure 73 models/ProductType.java part 1

77

The model class is a representation of the database table product_type. Which is a part of
the eBean framework to write queries to the database easier. The model class contains the
same values as the table in figure 68. That is because the model is a representation of the
database table as mentioned above. eBean Query is used to get the resource we want from

the database.

e findByName(String typeName) {

typeName. tolpperCa

lterParameters

All(Matcher.g

Figure 74 models/ProductType.java part 2

In figure 73 a table that going to be used was declared as @Table(name = product_type)
meaning that the table named product_type is the table that the model class wants to use.
The query in the function findByName is the same as:

SELECT id, code, name, updated

FROM product_type

WHERE name = UPPER(typeName)

78

LIMIT 1

But It does not say what to select. The finder object is declared as:

private static final Finder<Long, ProductType> find = new Finder<>(ProductType.class);

The eBean Finder uses the class as a base for implementations that can be injected or used as

public static entity static fields on the associated entity. (ebean.io, 2020)
See figure 67 to see what kind of values that are implemented in ProductType.class.
Files that had to be modified:

/mapping/Metamapper.java

Logistics.routes

/mapping/Metamapper.java

Pag st<ProductTyp

.EEtSEl:U’l[j}

Figure 75 /mapping/MetaMapper.java

":duCtTFp

The Metamapper class already existed. There were many existing methods and functions, we

created a mapping function based on the others. The MetaMapper takes care of the

pagination of the values based on the APIs offset, limit etc. which is declared in the

Logistics.routes file. Pagination is like page numbers in a book, if too much information is

published on one page, the user may get overwhelmed. The use of pagination is to present a

lot of information in small manageable chunks (SEOptimer, 2020).

Logistics.routes

productcatalog/vl/logistics/producttypes

Figure 76 Logistics.routes part 1

79

e

rontrollers. logistics. LogisticsProductTypeController.list(sort: String ?= offs er ?= @, limit: Integer ?

Figure 77 Logistics.routes part2

In Logistics.routes the application route for the logistics producttypes was declared. The
HTTP method GET is being used as shown in figure 76. When it’s being used, we would like to
call the function: controllers.logistics.LogisticsProductTypeController.list
This is what the MetaMapper takes care of: The offset, Limit, Callback and the sorting.
Now that all the files required to make the APl were created, it was time to check whether
the APl worked or not. Hence the test classes had to be made. The APl endpoints that was
created:

- Product type

- Purchase type

- Delivery type

- Order availability

- System belongings

- Sales client

- Price type

- Trade type

- Input type

- Media type
Someone in Infoland already made the Sales client API. The API did not include all the files

that we needed to get from the database. A new API of the same type had to be created.

5.3.2 API testing

When making the test classes, we needed two new classes. A test class for the controller, and
a test class for the service. And then insert some data in the appropriate files. See figure 78

to 81.

80

Product-data.yaml:

l Imodels.ProductType

NORMAL

Vanlig produkt

8l1-81 8l1:82:83

 Imodels.ProductType

Figure 78 Product-data.yaml

First, values have to be fetched from the database. This can be done by looking in the
database and pick the values. PostgreSQL was used to access the database. The resources
from the database was chosen randomly, they would not be affected by the tests. These

values were then put in Product-data.yaml file which already existed beforehand.

1.sql:

product_type |

auto_increment

Figure 80 1.sql part 2

81

A test table was created in 1.sql file. Which is ultimately an SQL file which contained different

tables. If the table already existed, we would ‘drop’ it, which means deleting the table.

Util.java:

Figure 81 Util.java

The last thing that had to be done was to insert the productTypes entry from the product-
data.yaml in Util.java. This was added to an already existing function called

loadDataForMemoryDB.

82

The Test Classes

LogisticsProductTypeServiceTest.java:

FilterParamete

(lient tokenClient = TokenClient()

nroductTy

TokenClient()

.getProductTy

=

Figure 82 LogisticsProductTypeServiceTest.java part 1

83

Filte

TokenClient()

@Test

Figure 83 LogisticsProductTypeServiceTest.java part 2

The tests in serviceTest class that was made:

getProductTypeTotal()

In this function we are using assertEquals, to check if the APl returns the correct product type
Total declared in product-data.yaml. If the expected value which is “2” is equal to the size of
the list. The test result will give us a green light meaning the test passed.

getTypesLimit()

This test checks if it can return 1 value back since the value of limit is set to 1 in this test. It
then checks if the next element is null or not. If its null, it will return an AssertionError.
getTypesOffset()

in this test there are two things to be aware of. The productTypesFromZero and
productTypesFromOffset (see figure 82) in this test, two different values will check if the first
object which is .value IDK

getTypesSort()

This test will check if the first element’s name in the productTypelist is the same as the last
element in the productTypelist after it is sorted. It will sort the list based on the names. (see

figure 83).

84

getType()

getType() is a function that is trying to get a specific resource from the database. The
resource the test wants to get is the name of a resource in capital letters. In this case it is
“PAKKE”

getProductTypeNotFound()

This test will return the result “NOT_FOUND” if there is no such product type in the database.
NB! This function is connected to the service class. See figure 71 to see the full function of

getProductType.

LogisticsProductTypeControllerTest.java:

L:gi:tic;P’:ductT?peE:nt’:lle'TE:t

putInternalClientTokenInCache(

listUnauthorized()

putTokenInCa

Figure 84 LogisticsProductTypeControllerTest.java

This class tests the controller. It contains three functions:

listOK()

It will check if the variable: USER_WITH_ACCESS has access to the BASE_URL or not. This
BASE_URL is the same one that was declared in logistics.routes

listUnauthorized()

This function will check whether the APl user has access to elements from the database.
listForbidden()

it will check whether the user K1201INFOLAND has access to the BASE_URL or not.

All the APIs have been made. But how exactly do we access them from the front-end
application? These APls were made in productcatalog which belongs to another package. A
pull request was made in bitbucket to merge this code to the master branch. When the

merge was finished, we could then start writing the code in Ambita-support application to

85

get the APl data. In the support application three files were made: (l)types.ts in the url folder
(ii) types.ts in dataservices folder (iii) Types.ts in the api folder. The reason they were called
“types” and not productType etc. are because of the repetition of the code, which made
them look very much alike. Instead of making three different files times the number of APIs

made, we made a single file.

Url/productcatalog/types.ts:

» U > product
t { url } oot oot
import { LOGISTICS } from ".

LIMIT = *?1imit=999"';

PRICE_TYPE_BASE = ~${LOGISTICS}/pri s${LIMIT} ;
PRODUCT_TYPE_BASE = ~${LOGISTIC 25 S {LIMIT} ;
TRADE_TYPE_BASE = " ${LOGISTICS}/trad s${LIMIT} ;

knownPriceTypesListUrl = ()

1 url(PRICE_TYPE_BASE);

knownProductTypesListlUrl
n url{PRODUCT_TYPE_BASE};

knownTradeTypesListUrl = {): stri
n url(TRADE TYPE BASE);

Figure 85 url/productCatalog/types.ts

Trying to fetch the APl route defined in Logistics.routes the reason that a limit is being added
to the base url, is because in productcatalog we set the default limit was ten. If there is a
database containing more than ten database values, then it would not be possible to list all of
them. Hence adding the limit of 999. A constant containing the base url of the different
types is made. The next thing that must be made is the api class for the types in the support

application.

86

Api/productCatalog/logistics/Types.ts:

name: =

updated: string;

ProductType
roductType;

s port 'riceType eType |
priceTypelist:

export
tradeTypelist:

Figure 86 api/productCatalog/logistics/Types.ts

In the api class we are defining the fields we want to get from the productcatalog. As shown
in the figure above. Instead of making three different interfaces where we declare code, id,
name and updated three times. There was a single interface that was made instead, so that
the other interfaces could inherit that with the “extends” keyword. This will improve the
quality of the code and will also look prettier. The reason for the “extends” keyword is
because of the three APl interfaces. The only thing that makes them different from each

other is the typelist. These are the list from the productcatalog package.

The dataservices class can now be created since it depends on the imports of the api and the

url class.

87

App/dataServices/types.ts:

petTradeTypelist = ()
irn dataServices.xhr.getIS0N(kn

petPriceTypelist = (): Pr
=turn dataServices.xhr.get]SON(kno

getProductTypelist = ():)
sturn dataservices.xhr.get]SON(knownProductTypeslis

Figure 87 app/dataservices/types.ts

All the lists are being imported so that we can use them in dataservices file. Exporting
constants were made since these have to be implemented in the front-end controllers for
each page for them to work. Making an arrow function with the type
TypesApi.ProductTypeApi as shown in the figure 87. The dataservices class contains functions
to get objects from the APl through Ajax requests.

When making these classes a problem occurred. When trying to add the APl endpoint for
“system belongings”. It did not work as expected. The weird thing is that it worked for the
other three APl endpoints but not for the system belongings. But it then worked if it was a
separate class instead. Our final solution was to let system belongings be it own class, so that

it would continue to work.

5.3.3 Identity functionality

To display our APl results in the front-end application, data has to be implemented in the

appropriate controller.

88

Figure 88 The identity controller.ts code

We first have to make tags and declare what type they are. As shown in the figure 88 the API
that was created is used in this class. The reason for this, is because the product requires that
these types of field to be shown. Then the names in yellow are functions. HasTradeType is a
function of the TypesApi.TradeType which returns a Boolean value. A Boolean value is either
true or false (1 or 0). The other function is an event listener function Riot. Since this
application is written in Riot.js and Typescript. This is exportable so that we can use the

predefined functions and tags in our init function. See figure below.

tag. productT
tag.update();

tag.hasTradeType = (tradeType: a
tradeTypes = tag.product.trade ter = ade . co == tradeType.code)

irn tradeTypes.length > 8;

Figure 89 init function in the identity controller class

89

This init is called in the front-end to access the functions and tags that resides in this
controller class. The four APl that we declared earlier is being used here inside the init. The
List of each APl endpoint is being called by accessing the TypesApi. NOTE! These functions
already exist in the TypesAPi. See figure 87.

We then used Promise.Prototype.then() method. What it does is it returns a promise
(developer.mozilla, 2020). A promise object represents the results of an asynchronous
operation whether it failed or not. (developer.mozilla, 2020). instead of using dispatch()
method, and declare other things within the scope. See figure 90. This was done easier and

more efficient as shown in figure 89.

.petConsumptionList(parameters0rHref)
.then{ consumptions
dispatcher.dispatch({
actionType: ACTIONS.GET COMSUMPTION LIST,

consumptions
13

.catch{errorAction (ACTIONS .GET_CONSUMPTION LIST)));

Figure 90 Example code 3
Then the update() method was used so that the components state will be updated. Now the

different APIs can be called to the frontend. This have been covered in the front-end chapter

on how they were called.

Aktuelle bransjer B2 Eiendom og Takst
B Bank og Finans
B Bygg og Anlegg
Offentlig forvaltning
Andre

Figure 91 checkbox states

In the screenshot above, there are 5 different elements from the API. These elements are
static, but not the state of these elements. A product can have up to five checked

checkboxes. Not all products have the same state, so a function had to be made to take care

90

of this little problem. Created a function named hasTradeType was created.

tag.hasTradeType = (tradeType: Typ e
tradeTypes = tag.product.t e trade.code === tradeType.code)

return tradeTypes.length > 8;

Figure 92 The tag.hasTradeType function
What does this little bit of code do? These APl endpoints that were created are in a form of
an array of objects. An object can contain multiple fields. In the tradeType array, an object
can have four different fields: Id, code, name and updated.
What this function does is taking in a parameter of type TypesApi.TradeType then it will
return true or false depending on the parameter that was used. “tag.product.trades.filter(...)"
is actually making a new array of an existing one. If the test passes a certain condition it will
then be passed into our new array named tradeTypes. It will return the length if it is bigger
than zero. if it was zero you wouldn’t need to check because there is nothing to check. Inside
the filter() method trade is the name of iterable objects in the tag.product.trades array. It will

check if the trade.code is the same as the parameters code. If the condition is true, the value

will then be put in tradeTypes.

In the view.tag we have this:

Figure 93 Ccalling hasTradeType(tradeType) in view.tag

Inside the input tag in view.tag each input field will get a unique value which is the
tradeType.code then there is the input element checked. If checked is true, the checkbox will

be checked. The top checkbox is checked. The bottom one is unchecked, see figure 94.

B Bygg og Anlegg
Offentlig forvaltning

Figure 94 Checked and unchecked checkboxes

The function that was made in the controller.ts class is being used here. Calling the function

hastradeType(tradeType) then use tradeType as a parameter, it will then check the inputs

91

tradeType if it’s true or not. Since the function is only checking a parameter at a time. When
we store it in an array and then the return tradeTypes.length > 0 is because the
tradeTypes.length can both be zero and one. If it is return 1 > 0 then it will always return,
since 1 >0 will always be true. So, all the checkboxes will be checked no matter what. Then

this function is useless.

5.3.4 Description functionality

refs: {
longDescription: HTMLDA
shortDescription:

chortDescription: Quill;

Figure 95 The description controller.ts code

To implement the text formatting tool, Quill was used to do this. First, Quill has to be
installed. Installing Quill can be done by writing this line in a git bash terminal:

npm install quill

After Quill has been installed. Import Quill to the project.

Inside the TaglInterface tags were declared like what was done in the identity part. In the
view.tag file there are two of these description boxes just like in the product description the
product owner provided us, which is a tag for long and short description. Then there are two
references to these description boxes named longDescription and shortDescription with the
type of HTMLDivElement. Tags that we need are Product.product which is the API for
product. The APl is used for finding the product.code so that is possible to connect the

correct description of each product.

92

Inside the init once again the tags are declared.

iptionTag)

tag.refs.shortDescription,
placeholder:

theme: 'sr

I H

tag.longDescription = Quill E. 5. longDescription, {

tag.on('unmount®, () {
tag.longDescription;
tag.shortDescription;

Figure 96 init function in the description controller class

Quill requires a container where the editor will be appended. Either a CSS selector or a DOM
object can be passed in (Chen, 2020). A DOM object was passed in which we made earlier.
Refs = reference. Onto the configuration, a placeholder was put, and ‘snow’ theme was

chosen. The options can be found at this site: https://quilljs.com/docs/configuration

Figure 97 Mounting tag

The mounting is to initialize the component upon runtime (Guarini, riot.js, 2020).

Figure 98 Unmounting the tags

Unmount is used to destroy the component and remove it from the DOM (Guarini, riot.js,

2020). How it was implemented in the frontend is already explained in chapter 5.2.5.

93

https://quilljs.com/docs/configuration

5.3.5 Delivery functionality

Because of slow pull requests, this was not possible to be done in time. But it can be done by

doing the same thing as in the identity.

5.3.6 Relations functionality

One of the hardest controllers to make was the controller for relations.

product: ProductApi.Product;
refs: {
check: HTMLInputElement;
checkAll: HTMLInputE
checkBoxes: HTMLInputEl

removeText: HTMLLabelElement ;

celectedProducts: ProductApi.ProductBit[];
add(event: Rio

checkAll

countery{ j: mw

izsChecked():

remove(event:

removefd1()z o

Figure 99 WizardContentRelationsTag

The functions and tags that were used in this controller is shown in the code snippet above
(figure 98). Here are some weird things, like availableProducts and selectedProducts. They
belong to two different kind of objects which have different fields. Because of this you can’t
simply cast these two tags like this: tag.availableProducts = tag.selectedProducts. Because

selectedProducts is missing a handful of fields.

94

Sek . Valgt (2) (0) Flem Alle

Velg alle WI1719001C
T T TOTo —| Eiendomsmeglerpakke
Opplysninger om adgang til utleie

X

WI17191600C Infopakke, samlet oppgave X
Crtofoto

Plandata i vektorformat

WI17192990

Plandata i vektorformat

Restanser og legalpant

Figure 100 Presentation of the relation boxes

In the view.tag. The table is divided into two parts. The left side is for the
tag.availableProducts while the left side is for tag.selectedProducts. The selectedProducts are
the objects that is already a part of the product. Which is usually a package. The available
products are the products which you can add to the package. Selected product can be called

using the product API. See figure 101.

£) t init = (tag: Wizar §
tag.product = productsStore.getPro

tag.selectedProducts = tag.product.children;

Figure 101 init function of the relations class part 1

Available products can be called using organizationsStore api. See Figure 102.
organizationsActions.getProductlist(tag.product.supplier.code);

onProductsNotFound = (): void
ag.availableProducts = [];
ag.update()

onProductsLoaded =]
ilableProducts = organizationsStore.pgetProductList() .filter(product 1
n

'tag.selectedProducts.findyselectedProduct selectedProduct.code === product.codef)| &&
!(product.code === tag.product.code

update();

Figure 102 init function of the relations class part 1

In the tag.availableproducts the code is written like that so that the duplicates do not appear

on both side. Hence returning ltag.selectedProducts.find(....) which means, that it does not

95

return the same selected products. If the selectedProducts.code is the same as product.code
then it will not display the product from selectedProduct array on the left side of the table.
One more important thing that was done was also not listing the same product within the

array of availableProduct. This was done by putting in an extra condition to the return value.

Figure 103 Value check
When the checkbox of a product is checked, it should move to the other side. Hence a tag
function was made. A remove button is also required to move it from the selected products
to available products again.

Add function:

rod ._'tE-.ﬁ ML
.item.code,

event.item.links.schema

.item.name

tag.availableProducts . indexOf(event.item);

if (index > -1) {
tag.availableProducts.splice(index, 1)

Figure 104 The relations: add function

We are using the array method push to put the value we want into the selectedProduct’s
array. We want only specific things, in this case there was a need of: code, name and links of
the event.item. When these were added to the other side, the elements from the other array
have to be removed. First of all, finding the index of the event.item can be done using
indexof() method. The returned value is stored in a variable named index. As long the index is
not negative, we use splice from tag.availableproducts on the index and replacing/ removing

1 element.

Sometimes the user of this application regrets its decision of moving the product. So, they

want to remove it from the list. Therefore, a remove method was also made. First thing that

96

was done was to find the index of event.item then the index of that event.item is then

spliced, to remove it from tag.selectedProducts. Then sort tag.availableProducts and put it

first in the list using unshift() method. See figure 105.

Event): woid]
tedProducts . indexDf (event.item) ;

¢ > -1) {
ctedProducts.splice(index, 1);

ilableProducts.sort();
bleProducts.unshift(event.item);

Figure 105 The relations: remove function

The hard thing was moving to the other side again, because it goes now from a smaller object
with less fields, to a bigger object with more fields. When the remove button is clicked, the
function will find the index, splice it from the current array. We sort the array, and then
unshift() it is identical to the push() method but puts the element in front of the array
instead. When you insert the item back from selectedProduct, you want the whole
event.item and not only name, code, links. But all the fields. So, the easiest way was just

remove it from the array, unshift() the event.item then calling tag.availableProducts again.

DU UT AT w2 2102
k {code T17158388", name: "Grunnkart”, Links: {.}}
app.df74dfb...i5:95151
{code: "WI17198388", name: “Grunnkart”, description:
b "Kart som viser all situasjon ndr det gjelder grunnkart og eiendo
, schema: 1, purpose_description: "", ..}

Figure 106 Google chrome console results

Figure 106 contains a screenshot from the console. The first bit is the event.item when

removing from tag.selectedProducts, the other line are the same product added back again.

As shown above, all the fields are back.

97

Sometimes the user chooses too many product, and do not know how many, a counter was
therefore made. See figure 107 for counter function. This was made easily by finding the
tag.selectedProducts.length then return the sum.

tag.counter }: number

sum =

a;
i=8; i ¢ tag.selectedProducts.length; i++) {

Figure 107 The relations: counter function

CHECK ALL and REMOVE ALL:

tag.checkAll = {}): void
tag.availableProducts.filter(products
tag.selectedProducts. pushi{
code: products.code,
links: [
L schema: prﬂductq.links.schema
}l
name: products.name

rds

leProducts.length = @;

ilableProducts = organizationsStore.getProductlist().filter(product
return tag.selectedProducts && !({product.code === tag.product.code);

tag.selectedProducts. length = 8;
tag.update()

Figure 108 The relations: check all and remove function

Using the filter to put all values in the new array called products, then push the
products.code, links and name into the tag.selectedProducts array. When everything has
been done. We set “tag.availableProdcuts.length = 0” to empty the array. Then update() to
update the DOM component. The Document Object Model (DOM) is a programming API for
HTML and XML documents. The logical structure as well as the way the document is accessed

is defined by the DOM (w3, 2020). DOM components are html tags, like divs, p and so on.

98

This cannot be done the same way as checkAll because of different types. What can be done
instead? Simply list all the tag.availableProducts again, including tag.selectedProducts.

Sometimes the dumbest solution is actually the wisest one.

5.3.7 Ordering functionality

Same as identity, because of slow pull request approval. The API for this task is not available.
But it should be able to implement it the same way as in the identity controller

5.3.8 Price functionality

The price calculation database had to be moved so that it will be easier to maintain, and also
stopped using AXAPTA. Microsoft Dynamics AX or formerly known as AXAPTA is a powerful
Enterprise Resource Planning solution, that helps global enterprises organize, automate and

implementation (Nair, 2020).

5.3.9 Parameters functionality

This was already created, so we didn’t have to create it. Only move it to the folder.

5.3.10 Authorizations functionality

The authorizations functionality was provided but due to little time let working on the
projects and the Coronavirus pandemic. This task also came late, due to product owner being

busy.

5.3.11 Approval functionality

This task has not yet been provided therefore no results.

99

5.4 Final results

User Story Objective Frontend |Backend
Easily open dialog box to

create new or existing product, sothatitis
possible to edit one or many products

The Modal within a short time

Develop a main frame for the user stories o
The Wizard be implemented including a navigation bar

Develop a feature that can edit the identity of
The ldentity a product

Implement a wizard that can
The Description edit and setup products description

Develop a wizard that can setup and edit
The Delivery the current products delivery methods partially done

Develop a wizard that can change the
relations between products so that is
The Relations possible to make different packages

Develop a wizard that can choose product
type and ordering schema so the customers
The Ordering are able to fill out and order what they need

The Executives edit, display and select executives

Develop a wizard that can edidt and add
new product prices, as well as display the
The Price products history for price changes.

Re-implement the current parameter feature
The Parameters OWeT To our new wizard.

create a wizard that can both edit and set
The Authorization the authority of the product.

The Approval Mo information regarding this yet

Table 2 Final results of features
Seven of twelve of these features were able to finish as shown in Table 2. The reason for
some of them are partially finished is because the APls were made, but never implemented
due to slow pull request approval. The Approval, Authorizations and The Price is not finished

because of late update, and feature defining.

100

6 Discussion

6.1 Design Evaluation

The final designs of the features we implemented turned out to on par or better than first
requests from product owner. Our group managed to develop multiple features that looked
as close to the user story design as possible. We were also very proud of the way it was

structured, as this was something we learned along the way.

The project structure and code structure for each user story did not initially look that great.
With each implementation and feedback from the development team, we adapted and
improved our programming skills to meet their expectations. As a result, the finalized code

structure for each feature we implemented looked much cleaner and more professional.

The visibility of the design was something we forgot to take into consideration, as the initial
size of the modal was a bit small. It was later fixed to make sure it was easy for the eye, and
comfortable to read through. This was something we accidentally stumbled across when
implementing a feature that was too big to fit inside the wizard. In the end, the modal turned

out great, and we were proud of with the results.

Accessibility was also important to us, and we made sure to make the modal as optimized
and accessible for everyone. The reliability of the wizard was already taken into consideration
by the product owner. Each design example for each feature was designed to be as reliable
as possible. It was therefore important that we implemented these features as close to the

design examples as possible.

We believe that each user will have an easy experience using the new wizard, whether it be
editing or managing a product. Our group used everything we learned from web
programming to our advantage. We made sure to develop a very reliable, accessible and

optimized modal that is also easy to use.

101

6.2 Development process

The development of Project Phoenix had a slow start. We had to get used to the technologies
and tools they used over at Ambita. With the guidance of the developers from team Infoland,

our group eventually got the hang of it.

During the first weeks of development, our group focused solely on getting familiar with the
current environment. We have had multiple projects while studying at Oslo Metropolitan
University (OsloMet), but we never had any experience working with a large team. Tools such
as Atlassian’s Bitbucket and Jira software were something we have never used before, but we
quickly adapted to it. This was also the case for the other tools used at Ambita, such as Slack

and version control.

Agile development methods such as scrum were something we had only learned about
during lectures. Experiencing it for the first time left quite the impression on us. It was a
really solid way to coordinate and solve issues together with the team. We went on to use

these meetings to report problems such as bugs or other technical issues.

Having experienced different programming languages, our group quickly got used to Riot.js
and Play 2 Framework’s syntaxes. We started with a simple button, then started
implementing features as we progressed. The basics were important, so we started with

those first. After a while, our group started working on the first user story.

We made sure to write a log for each implementation and progress done every single day.
This was to make sure that we did not forget what we worked on and how it was done. This
was sure to come in handy when working on future implementation. We also experimented a

lot with scss and its features.

The development process was not as easy as we had thought at first. We experienced a lot of
problems with certain features along the way. Some of these features also took days and
countless hours of testing to get working. Thankfully, we received a lot of help from the

Infoland team during the daily scrum meetings.

102

After having worked on the frontend part of the project, we started familiarizing ourselves
with their APl to work on the backend. Most of the codes inside the APl had everything we
needed to update, receive and remove data from the database. It was therefore advised to
us that we just copied and pasted some of the lines of codes. This turned out to be extremely
time consuming, so we decided to divide our manpower and split into two. One focusing on
working with the API, while the other one focused on working with the frontend features. We
made sure to write down our progress with detail so we could read what each of us had

done.

After a few months into development, our group had become very efficient and familiar with
working on the project. We used every tool and information to our advantage as we
progressed through each user story. Every time we came across an issue, we took it up with

the Infoland development team during scrum meetings.

We did not manage to finish every user stories requested by the product owner. However,
this was not required by Ambita. Our group could decide which user stories to implement at
the start of each Sprint. We also lost one week of work since we were not able to take our PC
home with us during the pandemic. It also slowed down our progression and the amount of

assistance we could get.

Despite not finish every user stories, our group enjoyed working on this project. The look,
design and optimization turned out to be better than we expected. The product owner was

also very pleased with the design of the project.

103

7 Conclusion

The development of the project started slow, but we picked up the pace after getting used to
their tools and technologies. With each implementation, we learned something new and
used it to further improve the features. Our group used all available tools to our advantage
and became more proficient in using them. The modal and wizard we had developed

exceeded our expectation.

We had developed a modal that was very reliable, accessible, optimized and easily usable by
anyone. It could edit or manage the variables and data on a product. Even though we did not
finish all the user stories, we came out with what looked like an exact replica of the example

designs.

It was not always a downhill experience for us, as we did encounter some issues uphill. But
with the help from the Infoland development team at Ambita, we managed to climb past it.
Working together with their team and learning from them improved our skills as

programmers.

The development of Project Phoenix, named after the bird of resurrection, was a very
enjoyable learning experience for us. Working in a professional environment together with
their development team taught us a lot. As a result, we ended up with a wizard that was

visually appealing and satisfying to use.

104

8 References

Amazon web services. (2020, 5 7). aws.amazon. Retrieved from aws.amazon.com:
https://aws.amazon.com/about-aws/

Amazon web services. (2020, 5 7). aws.amazon. Retrieved from aws.amazon.com:
https://aws.amazon.com/blogs/aws/highly-scalable-mysql-compat-rds-db-engine/

Atlassian. (2020, 5 22). atlassian. Retrieved from atlassian.com:
https://www.atlassian.com/software/jira

Atlassian. (2020, 5 22). atlassian. Retrieved from atlassian.com:
https://www.atlassian.com/software/jira/features

Atlassian. (2020, 5 22). atlassian. Retrieved from atlassian.com:
https://www.atlassian.com/software/confluence

Atlassian. (2020, 5 22). atlassian. Retrieved from atlassian.com:
https://www.atlassian.com/software/confluence/features

Atlassian. (2020, 5 19). atlassian. Retrieved from atlassian.com:
https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts

Atlassian. (2020, 5 24). atlassian. Retrieved from atlassian.com:
https://www.atlassian.com/agile/kanban/boards

Atlassian. (2020, 6 22). bitbucket. Retrieved from bitbucket.org:
https://bitbucket.org/product/features/pipelines

Atlassian. (2020, 5 22). bitbucket. Hentet fra bitbucket.org: https://bitbucket.org/

Baghel, A. S. (2020, 5 19). dzone. Retrieved from dzone.com: https://dzone.com/articles/software-
design-principles-dry-and-kiss

Chen, J. (2020, 5 8). quilljs. Retrieved from quilljs.org: https://quilljs.com/docs/configuration/

developer.mozilla. (2020, 5 8). developer.mozilla. Retrieved from developer.mozilla.org:
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise/then

developer.mozilla. (2020, 5 5). developer.mozilla. Retrieved from developer.mozilla.org:
https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods

developer.mozilla. (2020, 5 7). developer.mozilla. Retrieved from developer.mozilla.org:
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/First_steps/What_is_JavaScript

docs.oracle.com. (2020, 3 12). Retrieved from docs.oracle.com:
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html

docs.swagger.io. (2015, 4 1). Retrieved from http://docs.swagger.io/swagger-
core/v1.5.0/apidocs/io/swagger/annotations/ApiModel.html

ebean.io. (2020, 4 9). Retrieved from https://ebean.io/apidoc/11/io/ebean/Finder.html

edureka. (2020, 5 7). edureka. Retrieved from edureka.co: https://www.edureka.co/blog/object-
oriented-programming/

105

Guarini, G. (2020, 5 8). riot.js. Retrieved from riot.js.org: https://riot.js.org/api/
Guarini, G. (2020, 5 7). riot.js. Retrieved from riot.js.org: https://riot.js.org
javatpoint.com. (2020, 5 6). Retrieved from https://www.javatpoint.com/inheritance-in-java

jetbrains. (2020, 5 7). jetbrains. Retrieved from jetbrains.com:
https://www.jetbrains.com/datagrip/features/

jetbrains. (2020, 5 7). jetbrains. Retrieved from jetbrains.com:
https://www.jetbrains.com/idea/features/#built-in-developer-tools

Microsoft. (2020, 5 7). code.visualstudio. Retrieved from code.visualstudio.com:
https://code.visualstudio.com/docs/editor/whyvscode

mulesoft.com. (2020, 5 4). Retrieved from https://www.mulesoft.com/resources/api/what-is-an-api

Nair, M. (2020, 5 22). synoptek. Retrieved from synoptek.com: https://synoptek.com/insights/it-
blogs/what-is-microsoft-dynamics-ax-used-for/

Oracle. (2020, 5 8). developer.mozilla.org. Retrieved from https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Play. (2020, 5 7). playframework. Retrieved from playframework.com:
https://www.playframework.com/documentation/2.8.x/Introduction

Redhat.com. (2020, 5 4). Retrieved from Redhat.com: https://www.redhat.com/en/topics/api/what-
are-application-programming-interfaces

sass-lang. (2020, 5 7). sass-lang. Retrieved from sass-lang.com: https://sass-lang.com/

scrum. (2020, 5 22). scrum. Retrieved from scrum.org: https://www.scrum.org/resources/what-is-
sprint-planning

Scrum. (2020, 5 22). scrum. Retrieved from scrum.org: https://www.scrum.org/resources/what-is-a-
sprint-in-scrum

Scrum. (2020, 5 22). scrum. Retrieved from scrum.org: https://www.scrum.org/resources/what-is-a-
daily-scrum

Scrum. (2020, 5 22). scrum. Retrieved from scrum.org: https://www.scrum.org/resources/what-is-a-
sprint-review

SEOptimer. (2020, 5 22). seoptimer. Retrieved from seoptimer.com:
https://www.seoptimer.com/blog/what-is-pagination/#What-use-pagination

sparkfun. (2020, 5 19). learn.sparkfun.com. Hentet fra learn.sparkfun.com:
https://learn.sparkfun.com/tutorials/using-github-to-share-with-sparkfun/all

The PostgreSQL Global Development Group. (2020, 5 7). postgresql. Retrieved from postgresql.org:
https://www.postgresgl.org

Tomagruppen. (2020, 5 19). blogg.toma.no. Retrieved from blogg.toma.no:
https://blogg.toma.no/hva-er-proptech

tutorialspoint. (2020, 5 7). tutorialspoint. Retrieved from tutorialspoint.com:
https://www.tutorialspoint.com/intellij_idea/index.htm

106

tutorialspoint. (2020, 5 7). tutorialspoint. Retrieved from tutorialspoint.com:
https://www.tutorialspoint.com/typescript/typescript_overview.htm

Veeraraghavan, S. (2020, 5 19). simplilearn. Retrieved from simplilearn.com:
https://www.simplilearn.com/best-programming-languages-start-learning-today-article

Videos, M. (Regiss@r). (2015, 5 4). What is an API? [Film]. Hentet fra
https://www.youtube.com/watch?v=s7wmiS2mSXY

w3. (2020, 5 7). w3. Retrieved from w3.org:
https://www.w3.org/standards/webdesign/htmlcss.html

w3. (2020, 5 19). w3. Retrieved from w3.org: https://www.w3.org/TR/WD-DOM/introduction.html

w3schools. (2020, 5 19). we3schools. Retrieved from w3schools.com:
https://www.w3schools.com/bootstrap/bootstrap_modal.asp

107

